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Abstract:

Firstly a brief review of the problem of a "ductilization" of
ceramic materials by endless-fiber reinforcement is given. The
problems, especially the influence of the frictional stress in
the fiber-matrix interface, are pointed out for the unidirec-
tionally reinforced CMC-system LAS/SiC, which is well documen-
ted in the literature.

Secondly displacement controlled three-point bending experi-
ments with unloading-reloading cycles in edgewise loading
(parallel to the plies) with notched specimens are presented
as a means to charaterize the "quasi-ductile" behaviour of CMC
laminates. The effectiveness of the method is demonstrated for
C/C laminates in two different states of graphitization and
for a silicon infiltrated C/C, both in a bidirectional layup.

1. Introduction

Great efforts have been made in the last years to develop
tough ceramics which are not susceptible to fracture during
'mpact or under stress in the presence of flaws or notches.In
particular in the aerospace industry specific strengths, tem-
perature resistance and failure characteristics are demanded,
which cannot be fulfilled except by ceramic composites contai-
ning high performance fibrous reinforcements.

The general problem of ceramic materials is their extreme
brittleness. The aim is to "ductilize" these materials, to in-
crease their toughness. Several principles exist for increa-
sing fracture toughness either through incorporation of par-
ticles of second phase, short whiskers or platelets or trans-
formation toughening particles of zirconia. Such efforts in-
crease the thoughness by typically a factor of 2-3. By far the
most successful method of improving toughness is to reinforce



a matrix with strong carbon or ceramic filaments. The fracture
toughness can be increased by nearly an order of magnitude and
the fracture energy by two orders of magnitude with these
materials.

A lot of experience has been acquired in the past with carbon
fiber reinforced polymer matrix and with metal matrix com-
posites. Efforts have been made to extend this experience to
materials which can withstand high temperatures. The carbon-
reinforced carbon composites (C/C) were a step in this deve-
lopment, although they posses the disadvantage of not being
applicable in arduous surroundings without coating. Fresh im-
pulses came from the development of new fibers, such as the
organometallic derived silicon carbide yarn.

2. The problem of a "ductilization" of ceramic materials

As is already known from metal and resin matrix composites,
high elastic modulus fibers have to be incorporated into lower
elastic modulus matrices to achieve reinforcement and ductile
behaviour.

Beside the main condition for a ductilized ceramic matrix com-
posite with high toughness, that is, the failure strain of the
fibers must be significantly greater than that of the matrix,
the fiber should not be too strongly bonded to the matrix, it
should only be frictionally bonded. In recent years, since the
Nicalon-SiC fiber has widely been available [1], the general
features of this "ductilization" of brittle matrix composites
were studied predominantly in the LAS/SiC system, that is
lithium aluminosilicate glass-ceramic matrix, reinforce" th
silicon carbide fibers (Nicalon-fibers). The general _olems
of "ductilization" will be discussed with this material, con-
sidering an unidirectional fiber reinforcement (1-0 material).

3. Unidirectionally, single-fiber reinforced ceramic matrix
composites

The "ductile" load response for an unidirectionally single-
fiber reinforced CMC, obtained from the LAS/SiC system [2], is
schematically shown in Fig. 1. In axial loading a linear
elastic region ends at a stress ., defined by the onset of
matrix cracking. This point is similar to a "yield" point in
alloys, here originated by periodic cracking of the matrix. A
nonlinear region follows, which depends on the frictional be-
haviour of the fiber in the matrix. This region is accompanied
by multiple matrix cracking, with fibers remaining intact and
then by fiber pullout. At the stress a., an "ultimate tensile
strength", fiber bundle failure occurs. Then the load drops
slowly - not a brittle, but a delayed fracture is observed.



From an energy balance analysis, given earlier [3] and a frac-
ture mechanics approach [4,5,6] a relation between the matrix
rracking stress a. and microstructural parameters was given:

co = [6(l-V2)Kmc27Ef f2(1-f)(1+7)2/EmR]1/3 (1)

where Kmc is the matrix toughness, v Poisson's ratio,
= E --f/Er(1-f), R the fiber radius, 7 the sliding fric-

tional stress at the interface and f the volume fraction of
fibers.

This situation is not to be confused with that of unreinforced
materials, in which the stress at the tip of the crack in-
creases with increasing crack length (equation (2) does not
directly depend on crack length). The important result is that
in these composite systems the stress at the tip of the crack
becomes independent of crack length once the crack is longer
than a length co necessary in order to reach the equilibrium
situation (Fig. 2). This holds as long as the fibers in the
wake of the crack front remain intact. Thus matrix cracking is
impossible below the "threshold" stress a. of equation (1), no
matter how large a crack or a preexisting defect! The
equilibrium-stress/crack-size function for straight cracks is
plotted in Fig. 3 (for straight cracks o0/am = 1.02 and
Co/cm = 1.88). From Fig. 3 it can be seen that the stress re-
quired to propagate a matrix crack is independent of crack
length for cracks larger than about cm/ 3 . The crack response
in this region differs from the behaviour of cracks in unrein-
forced brittle materials, in which the strength decreases with
co- 1/2 , Fig. 3.

cm/3 was evaluated to be several fiber spacings long and this
implies that the stress for matrix cracking is not substan-
tially reduced by introduction of larger flaws during fabri-
cation or in service.

It is obvious from the analysis that the attainment of steady
state cracking at high stress levels is restricted to a narrow
range of microstructures. The limiting value is the level of
o that can be achieved without causing fiber failure; optimum
values of all three parameters a, , r and f increase the level
of co in equation (1). Additionaly the influence on cm has to
be considered. A significant microstructural restriction con-
cerns the volume fraction of fibers f because optimum pro-
perties can be achieved only in unidirectional composites
whereas in multidirectional systems the volume fraction of
fibers is in any case less.



In bending tests the load-deflection behaviour is similar to
that in tension [2]. High failure strains and notch insensi-
tivity are characteristic for such composites. These qualities
are explicable in terms of the slip processes occurring at the
fiber/matrix interface or the frictional stress r [2,41.

Any change in the interface layer between fiber and matrix has
a decisive influence on the "quasi-ductile" response of the
CMC. This was proved for the system LAS/SiC, discussed as an
example here. Even short exposures to high temperature can re-
embrittle the material: bending experiments in Ar and in air
at high temperatures resulted in the some load level, but the
morphology of fracture changed completely from pullout in Ar
to rather brittle fracture in air [7,8]. For an unitape 2-D
laminate of the same system LAS/SiC this behaviour was inve-
stigated systematically [9,10]. It was found that the reem-
brittlement after an exposure of 2-4 hours at high tem-
peratures in air resulted from a change in the C-interface
layer to SiO 2. This change provoked an increase in the fric-
tional stress between fiber-matrix and thus in the pullout
lengths.

4. Measurement of interfacial mechanical properties

The question is, whether only frictional forces act in the
interface, as assumed for the steady state cracking in the
matrix, or fiber displacement involves also debonding followed
by frictional sliding. The general case will be a weak bonding
and debonding in addition to frictional forces.

The frictional stresses were measured by pushing a pyramidal
indenter on the end of an individual fiber and measuring the
resulting displacement of the surface of the fiber below the
matrix surface [2,11]. This method was refined recently by
using an ultralow-load indentation instrument (Nano Instru-
ments, Inc. Braintree, MA) to measure force and displacement
continuously during loading, unloading and load cycling. Fric-
tional sliding and combined debonding and frictional sliding
at the interface were analyzed for a LAS/SiC material [12,13].
In [13] method was proposed to achieve relative frictional
stress values in the special cases before and after heat
treatment at 1000"C in air on the System LAS/SiC. For this
purpose, specimens were cut into blocks and by erosion of a
portion of the matrix, fibers were disclosed, resulting in a
distribution of protruding fibers across a flat matrix sur-
face. A load was applied by means of a sapphire hemisphere of
1 mm diameter on the protruding fibers. The load-displacement
curves were measured with respect to the matrix.



5. Laminated ceramic matrix composites

It was demonstrated in Fig. 1 that when unidirectionally rein-
forced composites are loaded along the fiber axis, matrix
cracking occurs at a stress o, followed by fiber failure at
the ultimate stress a. The transverse properties are substan-
tially inferior, load response is linear elastic and fracture
occurs at a stress aT << a., Fig. 1.

This considerable anisotropy reqLires that the most structural
composites be laminated.

The C/C and C/SiC laminates discussed in the next chapters
consist of bundles of 3000 single carbon fibers, the bundles
are woven to prepregs and these plies are stapled ortho-
gonally. Inside such a fiber bundle considerations and
measurements of the frictional stress, as discussed in the
last chapters may be valid. But in the laminates there also
exist interbundle interfaces between parallel bundles and
orthogonal bundles, in-plie delamination and inter-plie
delamination will occurr.

The response in loading will depend on the loading mode to a
high degree: e.g. in three-point bending with loading perpen-
dicular to the plies, because of shear deformation, the result
in general depends on the span to height ratio. For laminates
with low frictional stresses such as C/C the result addi-
tionally depends on the plie thickness to height ratio [14].

6. How to characterize the "quasi-ductile" behaviour of CMC
laminates?

As previously discussed the frictonal stress in the interfaces
fiber-matrix has a decisive influence on the quasi-ductile be-
haviour of unidirectionally single fiber reinforced CMCs. For
laminates not only interfaces single fiber-matrix inside a
fiber bundle, but also interbundle interfaces parallel and
interbundle interfaces orthogonal may influence the quasi-
ductile behaviour. The methods to measure the frictional
stress in the interfaces single fiber-matrix mentioned in the
last chapter seem not to be applicable to those of fiber
bundles. Therefore the authors tried to get information on the
frictional behaviour of laminates by a special kind of experi-
ments: prismatic specimens of rectangular cross-section were
loaded edgewise in displacement controlled three-point bending
experiments.



The loading principle is demonstrated schematically in Fig. 4.
The chosen span was S=90mm, the displacement rate in the
closed loop, measured and controlled directly at the notch by
a SiC-pushrod, was 6=200in/min. The SiC loading rods had a
radius of curvature of 5mm. The experiments could be performed
at high temperatures by induction heating indirectly by means
of a carbon susceptor tube. The whole loading system, inside a
vacuum vessel, could be evacuated to 2.10-5 mbar [15].

Using this equipment load-displacement curves in monotonic
loading and with unloading-relcading cycles were achieved.
With this kind of experiment changes in the ductile response
of a C/C (carbon-reinforded carbon) laminate by silicon infil-
tration and the influence of the temperature of graphitization
on the ductile behaviour of another C/C laminate were investi-
gated.

7. The change in the "ductile" response of a C/C laminate
after infiltration with silicon

C/C laminates of 5H-satin prepregs, woven from tows of 3000
PAN-based fibers were laminated in a [0/90'] layup. All the
material was kindly supplied and the processing performed by
Sintec-Keramik, Buching, FRG. The material was only carbonized
but not graphitized. After the carbonization the material was
not reimpregnated and was thus highly porous. This material
wds iifiltrated by silicon a- a first step for the development
of an oxidation protected type. In Figs 5ab the load-displace-
ment curves after cyclic loading are shown [16]. The enve-
loping curves of the unloading-reloading cycles are mearly
identical to the load-displavement curves in monotonic
loading.

In Fig 5a it can be seen for the C/C laminate carbonized only:

* for the enveloping curve:
- only small deviation from linearity at a relative high level

of load;
- a sharp maximum in load;
- subsequently rapid decay in load;
* for the unloading in successive cycles:
- low amounts of irreversible displacement.



For the carbonized and silicon-infiltrated (C/SiC/Si) laminate
in Fig. 5b:

* for the enveloping curve:
- the deviation from linearity starts already at a low level

of load;
- no sharp maximum in load, but a smooth decay in sustained

load (the load-displacement curve could be continued beyond
the displacement range shown in Fig 5b);

• for the unloading in successive cycles:
- the displacement is nearly completely irreversible.

After the experiments the specimens were broken completely
open and the pull-out behaviour was studied in the SEM, see
Figs 6ab [16].
In Figs 6ab it can be observed that:

- in the only carbonized material the fiber-bundles failed in
a brittle manner without pull-out of single fibers inside
the bundle, but complete bundles were pulled out;

- in the siliconized material single fibers inside the bundles
failed and were pulled out, but no complete bundle was
pulled out;

- the surface of the single fibers appears rough because of
adherent siliconized carbon matrix (see Fig 7).

This behaviour may be interpreted as follows:

* For the carbonized only material it is concluded from the
shape of the load-displacement cycles and the pull-out be-
haviour that

- the friction in the interbundle interfaces is very low (the
bonding may be not much more than van der Waals), thus re-
sulting in good gliding behaviour of complete bundles and
low irreversible displacement during cycling;

- because of the low bonding in the interfaces most of the
load has to be sustained by the fiber bundles and these fail
in a brittle manner and thus the load drops rapidly from a
sharp maximum.

-Because of these facts, the fracture behaviour is estimated
to be brittle rather than ductile.

* For the silicon-infiltrated material it is concluded that
- the friction in the interbundle interfaces and partly

between the fibers inside the bundles is high, thus the dis-
placement during cycling is nearly completely irreversible;

- because of the relatively high bonding in the interfaces the
load is distributed to the volume, thus the load drops
slowly.

-Because of these facts the fracture behaviour is estimated
to be rather "quasi-ductile"



An estimation of the areas below the load-displacement curves
of Figs 5ab as a measure for the work of fracture may confirm
these statements.

8. The change in the "quasi-ductile" behaviour of a C/C
laminate by a variation in the temperature of graphi-
tization

C/C laminates of 8H-satin prepregs, woven from tows of 3000
PAN-based fibers were laminated in a [0/90] layup. The ma-
terials were kindly supplied and processed by Schunk-Kohlen-
stofftechnik, Gieen, FRG. After four cycles of reimpregnation
and carbonization the materials were graphitized at Tem-
peratures of 2100'C ("laminate A") and 2400"C ("laminate B").

As already deceribed notched specimens of both the materials
were loaded edgewise in displacement controlled experiments at
room temperature and at 1000°C. In Figs 8ab load-displacement
curves with numerous unloading-reloading cycles are shown for
both the materials at room temperature. The dimension and the
loading condition can be read from the diagrams. Again the en-
veloping curves of the unloading-reloading cycles are nearly
identical to the load-displacement curves in monotonic
loading. For both the materials the deviation from linearity
occurs at a high load level, the maximum load appears sharp,
followed by a rapid decay in sustained load. A difference
between the materials is evident in the amount of irreversible
displacement after unloading in successive cycles: material B
exhibits only small amounts of irreversible displacement
(Fig 8b), while material A shows remarkable amounts of irre-
versible displacement (Fig 8a).

Also the shape of the cycles differs: if one observes one of
the cycles in Fig 8a at a low load level (high irreversible
displacement), the first slope (starting the reloading) and
the slope at the end of the cycle (starting the unloading) are
steep, nearly as steep as the initial loading. This behaviour
is sketched in Fig 9. These initial slopes also appear for
material B in Fig 8b, but only slightly. These slopes are
interpreted as a measure of "bonding" friction at the monents
were the loading stops and changes its direction. At a certain
load level this slope drops suddenly, friction turns to
"gliding" friction. The same occurs in unloading, where the
stored elastic energy now "loads" the specimen in the opposite
direction. When the energy is exhausted, the cycle stops at a
certain irreversible displacement , see Fig 9.

This difference in bonding and gliding friction nearly
vanishes for material B (Fig 8b), it is supposed that the
frictional stress in the interfaces is lowered by the increase



in temperature of graphitization from 2100°C to 2400°C. A look
at the structure of the materials confirms these statements
(Figs l0ab): Laminate B with the higher temperature of graphi-
tization exhibits a higher content of macropores in the inter-
bundle-regions (Fig lOb), compared to laminate A with the
lower temperature of graphitization (Fig 10a).

After breaking open the specimens, the pullout behaviour was
observed in the SEM. The appearance for both the laminates A
and B was similar to that shown in Fig 6a: pull-out of com-
plete fiber-bundles and brittle fracture of the bundles, see
Figs !lab. For the first three rows of pulled out bundles
beyond the notch root (in Fig lb from the left) the pull-out
lengths of the fiber-bundles were measured. The mean pull-out
length increased by 64% with increasing the temperature of
graphitization.

From the response to the cycling and the estimation of the
pull-out lengths it is concluded that the "quasi-ductile" be-
haviour decrease with increasing the temperature of graphi-
tization from 2100°C to 2400°C.

The same cycling experiments were performed at a testing
temperature of l000"C in a vacuum of 2.10-5mbar for both the
laminates A and B, see Figs l2ab: The shape of the enveloping
curves and that of the cycles is similar to those gained at
room temperature. Except the amount of irreversible dis-
placement seems to be higher for both the laminates, compare
Figs 8ab to Figs l2ab. The pullout appearance was similar to
that in Figs lab for the room temperature tests.

A measurement of the pull-out lengths again showed the mean
pullout length to increase by 69% with increasing the tempera-
ture of graphitization from 2100°C to 2400°C. This means that
the "quasi-ductile" behaviour decreases with the increase in
temperature of graphitization, as for the tests performed at
room temperature.

Compared to the tests at room temperature the mean pull-out
lengths for the tests at 1000°C were shorter by , 20%! The
results of the measurements of the pull-out lengths are sum-
marized in Table 1.



Table 1 pullout lengths for laminates A and B,loaded

at room temperature and at 1000C,[pm]

Tgr aph = 2100'C Tgraph = 2400"C

+64%

Tp = 20°C 840 ± 319 (±38%) 1381 ± 545 (±39%)

- 22% - 19%
TP = 1000°C 657 ± 300 (±46%) - 1115 ± 560 (±50%)

+69%

Ac-)rding to the results in Table 1 it is supposed that the
frictional stress in the interbundle interfaces is increased
by an increase in testing temperature for both the laminates.

To prove this the temperature dependence of the Young's mod-
ulus of laminate A parallel to the O'-fiber direction was in-
vestigated with the resonant's beam method [17]. The modulus,
at room temperature 83±2GPa, increased with increasing tem-
perature to reach a plateau value at - 1000"C, see Fig 13. In
the same range of temperature the material was observed in a
SEM with a heating equipment- besides the macropores already
shown in Fig 10a, at room temperature cracks were observed
inside the bundles, see Fig 14 left. These cracks were ob-
served to close completely in the temperature range, where the
Young's modulus reaches its plateau value.

It is proposed that during the processing of the materials
cooling down from the high temperatures to room temperature
residual stresses in tension perpendicular to the bundles
arise, which cause cracking as observed in Fig 14. Approaching
the equilibrium temperature these stresses relax, cracks
inside the bundles close and the friction between the bundles
increases [18].

The relaxation of the residual stresses may explain the higher
irreversible displacement observed in Figs 12ab at the testing
temperature of 1000"C compared to Figs 5ab at the testing at
room temperature and thus the decrease in the mean pull-out
lengths by , 20% (Table 1) from room temperature to 1000"C.

It can be stated here that an increase in testing temperature
(temperature of application) improves the "quasi-ductile" be-
haviour of the investigated C/C laminates A and B.



Summary and outlook:

Firstly a brief overview of the problem of the "ductilization"
of ceramics by endless fiber-reinforement and of the import-
ance of the frictional stress in the interface fiber-matrix
was given. The problems for the unidirectionally endless-fiber
reinforced LAS/SiC were dicussed, a material well documented
in the literature.

A special kind of experimental procedure is proposed to
characterize the "quasi-ductile" behaviour of C/C-(carbon
fiber reinforced) and C/SiC-(carbon fiber reinforced silicon
carbide)-laminates in [0 9go] layup: notched prismatic speci-
mens are loaded edgewise (parallel to the plies) in displace-
ment-controlled three-point bending experiments with inter-
mediate unloading-reloading cycles.

A purely carbonized, porous [0 90]-laminate and the same
material in a siliconized version were loaded to demonstrate
the effectiveness of the method. Two batches of another
[0 90]-laminate four times reimpregnated and carbonized, were
graphitized at two different temperatures (2100°C and 2400°C)
and then loaded in the same way.

Though the "quasi-ductile" behavior of laminates depends to a
high degree on the mode of loading, e.g. notched-unnotched or
edgewise (parallel to thp plies) in summary the following
statements may be made:

From the shape of the enveloping curve , the amount of irre-
versible displacement of successive unloading cycles, and from
the shape of the cycles themselves and the pullout appearance,
it is concluded that these materials exhibit "quasi-ductile"
behaviour Siliconizing improves the quasi-ductility of the
purely carbonized material, an increase in the temperature of
graphitization decreases that of the reimpregnated material.

The proposed method seems sensitive enough to characterize the
quasi-ductile behaviour of C/C and C/SiC laminates. The next
steps will be to give an analytical evaluation of the un-
loading-reloading cycles and for the bonding and gliding
friction in the individual cycles. TEM investigations of the
interfacial regions are now in progress.
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Fig. 1 Schematic graph of an uniaxially endless fiber-rein-
forced composite, indicating longitudinal and trans-
verse stress-deflection behaviour [2].
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Fig. 2 Crack perpendicular to the fibers. In the dotted area,
slipping between matrix and fibers has occurred
(schematically).
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a) laminate carbonized only: pullout of complete
bundles
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b) laminate carbonized + infiltrated by silicon:
pullout of single fibers in the bundles,
no pullout of complete bundles

Figs 6ab Pullout of the fracture surface of notched specimens in
edgewise loading



Fig 7 Laminate, carbonized + infiltrated by silicon:
single fibers with adherent siliconized carbon matrix
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Fig 9 Change in slope of unloading-reloading cycles, schema-
tically analogous to Fig 8a for laminate A.
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a) parallel to the fracture surface (notch root in
front)

4t

b) perpendicular to the fracture surface (notch root
left)

Fig llab Pullout of the fracture surface of notched specimens in

edgewise loadinq, laminate A



C/C-laminate "CF222", graphitized at 2100*C

T,.. - 1000'CY r F: I div. - ZO N
6: 1 div. - 20 M

CC 9 A

0.~

displacwnt 6

C/C-laminate ACF222", graphitized at 2400*C

F: I div. - 20 N 7 /

6: 1Idiv. - 20 yo /1, / 5N

b)

Figs l2ab Unloading-reloading cycles in displacement controlled
three-point bending experiments at 1000*C
a) laminate A
b) laminate B



EMT E(20 C)

1.05~

1

0.98
0 200 400 600 800 1000 1200 1400

Temperature [ C1

Fig 13 The dependence of Young's modulus on temperature for
laminate A.

t7..

A .-. ~ A

Fig 4 Cu pependculr totheplie; pcturs b SEMwit

heating eqimet rom tepraue lft,78
(right).



Preprints of the Proceedings

NATO Advanced Research Workshop

Toughening Mechanisms in
Quasi-Brittle Materials

July 16-20, 1990

NSF Center for Advanced Cement-Based Materials
Robert R. McCormick School of Engineering and Applied Sciences
Northwestern University
Evanston, Illinois
USA

S.P. Shah, Editor

Sponsored By:

NATO Scientific Affairs Division
U.S. Air Force Office of Scientific Research
U.S. Air Force WRDC/MLLN
U.S. Army Research Office, Materials Science Division

......__-----_--_.__._....._..._..._.



Workshop Organizing Committee

Surendra P. Shah, Northwestern University, Director
Nils Claussen, Technical University of Hamburg
Katherne Faber, Northwestern University
Sidney Mindess, University of British Columbia
Peter Pratt, Imperial College London

Workshop Secretary

Eric Landis

WorkshoD Coordinator

Auria Rosenberg

Local Organizing Committee

Zdenek Bazant
Hamlin Jennings
Tianxi Tang
Mary Lynne Williams

Acknowledaements

G. A. Venturi and James Bombace, NATO Scientific Affairs Division
Spencer Wu, U.S. Air Force Office of Scientific Research
Theodore Nicholas, U.S. Air Force WRDC/MLLN
Edward Chen, Materials Research Division, U.S. Army Research Office
Jerome Cohen, Dean, Robert R. McCormick School of Engineering and Applied

Sciences
Raymond Krizek, Chairman, Civil Engineering Department, Northwestern

University

An additional acknowledgement is made to the ACBM center post-doctoral
fellows and graduate students who spent many hours working to ensure the
success of the workshop. These include:

Alberto Castro
Avraham Dancygier NTIS CRAM
Ravindra Gettu oTIC TAB

Mustafa Karaguler unannounced 0
, OsU~r JushfiCa tion

David Lange
Zongjin Li
Weiping Zhang

:Av.I13,dbfl* Ccdes

ii_



PREFACE

A variety of ceramic materials has been recently shown to exhibit
nonlinear stress-strain behavior. These materials include transformation-
toughened zirconia which undergoes a stress-induced crystallographic
transformation in the vicinity of a propagating crack, microcracking ceramics,
and ceramic-fiber reinforced ceramic matrices. Since many of these materials
are under consideration for structural applications, understanding fracture in
these quasi-brittle materials is essential.

Portland cement concrete is a relatively brittle material. As a result
mechanical behavior of concrete, conventionally reinforced concrete,
prestressed concrete and fiber reinforced concrete is critically influenced by
crack propagation. Crack propagation in concrete is characterized by a fracture
process zone, microcracking, and aggregate-bridging. Such phenomena give
concrete toughening mechanisms, and as a result, the macroscopic response of
concrete can be characterized as that of a quasi-brittle material. To design
super high performance cement composites, it is essential to understand the
complex fracture processes in concrete.

A wide range of concern in design involves fracture in rock masses and
rock structures. For example, prediction of the extension or initiation of fracture
is important in: 1) the design of caverns (such as underground nuclear waste
isolation) subjected to earthquake shaking or explosions, 2) the production of
geothermal and petroleum energy, and 3) predicting and monitoring
earthquakes. Depending upon the grain size and mineralogical composition,
rock may also exhibit characteristics of quasi-brittle materials.

Recently, considerable interest has been developing in understanding
and modeling the fracture processes in these quasi-brittle materials as well as
in designing materials with improved toughness. The research activities in
these groups of materials: ceramics, cement and rock can be substantially
enhanced with the exchange of information between these three groups of
investigators. Since the field is relatively new, it is likely that the researchers
working with one set of materials are not aware of similar developments with
other sets of materials. Although each material has its own set of specific
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characteristics, many common aspects can be shared among these quasi-brittle

materials. These include: 1) application of nonlinear fracture mechanics, 2)
experimental and theoretical considerations of strain localization, 3)
microscopic observation of fracture process zone, 4) non-destructive evaluation

of damage, 5) models to relate microstructure with macroscopic response, and
6) development of experimental and theoretical tools.

The purpose of this workshop is to bring together researchers addressing

the problem of fracture in cement, ceramics, and rock so that they can share
their knowledge and develop a more general syntheses of the problem.

This preprint volume contains contributions from lecturers for each of the
9 sessions. The final proceedings of this workshop will be published in a
hardcover book by Kluewer Academic Publishers (NATO ASI Series). This
book will contain 36 chapters; the finalized contributions of 27 lecturers and 9
reporters.

I hope that the efforts of all who have contributed to this workshop will
produce lasting and worthwhile results.

Surendra P. Shah

June 1990
Evanston, Illinois, USA
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FRACTURE PROPERTIES IN SiC-BASED PARTICULATE COMPOSITES

K. T. Faber, W.-H. Gu, H. Cai, and R. A. Winholtz
Northwestern University
Department of Materials Science and Engineering
Evanston, Illinois 60208
U.S.A.

D. J. Magley
The Ohio State University
Department of Materials Science and Engineering
Columbus, Ohio 43210
U.S.A.

ABSTRACT. In order to evaluate the role of residual stresses in fracture
toughening, a SiC-based particulate composite has been studied under
uniform stressing conditions and in the near tip stress field of a
pre-cracked specimen. First, residual stresses in a SiC-TiB2 composite
before and after stressing have been measured using x-ray diffraction.
Tensile residual stresses in the TiB2 drop by 50% after bending stresses of
250 MPa were applied. Likewise, the compressive residual stresses in the
SiC phase decrease accordingly. Second, in the near tip stress field, a
process zone of microcracks has been measured using transmission electron
microscopy of thin foils taken from various locations from a fracture
surface of a fracture mechanics specimen. Microcrack zones greater than
150 pm in height have been measured. Crack bridging sites of TiB2
particles operate more than a few millimeters behind a propagating crack.
Hence, the toughening in this system is comprised of both stress-induced
microcracking and crack bridging. The various contributions to the
toughening are discussed.

1. Introduction

The fracture toughening of ceramic materials has received a great deal of
attention over the last decade. Mechanisms by which brittle materials can
be toughened fall into two categories: process zone mechanisms and bridging
mechanisms.[1] Process zone toughening, either by stress-induced phase
transformations or stress-induced microcracking, provides shielding of a
propagating crack by virtue of the microstructural changes which occur in
the near vicinity of the crack. Bridging mechanisms operate behind a crack
tip and provide closure forces which also act to reduce the applied stress
intensity. In both cases, residual stresses may serve either as source or
as a consequence of the the toughening process and should be considered in
examining the toughening increment.

Residual stresses in two phase materials have long been recognized as
having a significant influence on mechanical strength. In the extreme,
residual stresses can result in spontaneous microcracking on cooling,
destroying mechanical integrity. The conditions under which such cracking
occurs are now well established.[2,3] Cracking can be avoided by
maintaining a particle size distribution below some critical size, bct
described by
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b - K 2 ((+V )/2 + 0(l-2v ))/[E mQAT]
2

c Ic M p m

where q is constant ranging from 2 to 8, Kic is the fracture toughness of
the microcracking site (often the interface), E is the elastic modulus, v
is Poisson's ratio, P is the modulus ratio, Em/Ep, and the subscripts, m
and p, refer to the matrix and particulate phases, respectively. The
product AaAT is the thermal mismatch strain, where Aa is the difference in
thermal expansion coefficients of the matrix and particulate phases, and AT
is the difference between the temperature at which relaxation stops and the
temperature of interest. However, it is below the threshold bc where the
present interest lies. It has been postulated that a regime exists whereby
residually-stressed particles in the vicinity of an advancing crack will
microcrack when a critical value of applied stress is reached. Such
stress-induced microcracking is suggested to result in significant
toughening by shielding the crack from the applied loading. [3-7] It is
the intent of this paper to examine stress-induced phenomena in two-phase,
non-transforming ceramics under uniform and non-uniform loading. The
system chosen for study is a SiC-TiB2 composite where residual stresses
arise from a high thermal expansion mismatch.

2. The Silicon Carbide-Titanium Diboride System

Silicon carbide, although a highly refractory material, is limited by its
low fracture toughness (Kic a 3.22 MPaVm). Additions of TiB2 to SiC have
provided significant increases in the fracture toughness (AKc a 5.0 MPa/m)
as measured by a few investigators [8-10], although the operative
toughening mechanisms were not identified. SiC-TiB2 has also been known to
exhibit R-curve behavior [10], a manifestation of both shielding and
bridging processes.

The materials studied here were prepared by pressureless sintering at
temperatures in excess of 2000 C and were nearly 99% dense. The materials
examined in this study contained TiB2 concentrations of 15.2%, by volume.
The average TiB2 grain size was measured to be approximately 4.5 Am, less
than the critical size for spontaneous microcracking calculated using Eqn.
(1). Residual stresses in this system arise from a high thermal expansion
mismatch where a (SiC) a 5.6 x 10-6 0 C-1 and a (TiB2) a 7.9 x 106 0c-1

over the temperature range 25 to 17000C. We may approximate the residual
stress by considering a spherical TiB2 particle in an isotropic SiC matrix
by [11]:

AaAT
a - (2)

(l+V m)/(2E m ) + (1-2v p)/Ep

For the appropriate thermal and elastic properties of SiC and TiB2, aR is
of the order of 1.9 GPa.

3. Experimental Observations of Toughening Processes in SiC-TiB2

In an effort to examine the potential toughening mechanisms associated with
the high degree of residual stress in these SiC-based materials, a variety
of experimental techniques have been utilized. First, if stress-induced
microcracking is actually occurring, then some monitor of the stress relief
on microcracking is warranted. Residual stress analysis via x-ray
diffraction is chosen for such studies. This technique will provide
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conclusive, albeit indirect, evidence for the microcracking process.
Direct observation of the microcrack zone via transmission electron
microscopy is also employed. Finally, additional toughening behind the
crack, also associated with residual stress, is examined through
interrupted fracture experiments. The three will be described herein.

3.1 Microcracking Under Uniform Stress

To establish stress-induced microcracking in a uniform stress field,
residual stresses were measured by x-ray diffraction prior to stressing and
upon unloading. For this investigation, the SiC-TiB2 specimens were3
electrically discharge machined into bars 7.62 x 1.27 x 0.635 cm and
polished to a 0.25 pm finish using a sequential treatment of diamond
pastes. A pressureless-sintered SiC, containing sintering aids of boron
and carbon, was diamond machined with identical surface finishes and used
as a standard. The reflections examined were the (121) for 6H SiC, the
major SiC polytype present, and the (202) for TiB2 at approximately 1480 26
and 144 20, respectively. Further details of the x-ray diffraction
experimental set up may be found in reference 12.

During x-ray diffraction the sample was oriented according to the
scheme shown in Figure 1. A General Electric quarter circle was used for
both the 4-tilts and the O-rotations. Diffraction measurements were made at
six 0 values between 0 and 3000 and six 4) values between 0 and 450 for each
0 setting. Peak 0positions at any 0, 4) rotation were measured by step
scanning at 0.05 20 increments for 100 seconds. Because peaks have a
tendency to broaden as the specimen is rotated about the 4 axis due to
x-ray defocussing, longer counting times were employed at large values of
for greater accuracy. Peak positions were determined by fitting the
measured values of intensity versus 20 to a parabola.

After the x-ray measurements were made and the residual stresses
determined, the SiC-TiB2 composite and the SiC standard were placed in a
four-point bend fixture and loaded until fracture occurred. At fracture
the outer fiber tensile stress reached 249 and 266 MPa for the composite
and the standard, respectively. X-ray measurements were repeated in areas
which experienced the maximum tensile stress to monitor any changes in
the residual stress profile following stressing. Although four-point
bending can hardly be considered uniform loading, the depth of penetration
of the x-rays (approximately 50 pm below the surface to account for 90% of
the x-ray intensity) allows examination of the stress over a nearly
uniformly stressed region.

The complete stress matrix can be determined from the stress analysis,
as shown by Noyan [13] and Cohen [14]. The change in the interplanar
spacing related to stresses in the coordinate system in Figure 1 is

d S 2 2 2
" - --2 (a1lCos + a1 2sin2o + a22 sin2O- 3 3 )sin 4

0

+ ! + SlI(a 11 + a 2+a3)

2 33

+ -2 (o1 3COSO + a23sino)sin2o (3)
2

where do is the unstressed lattice spacing, c represents the strain, and
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S and S /2 are the x-ray elastic constants l+L/E and w/E, respectively,
for an isotropic solid. (The bulk values of Y and E were used to determine
their values [15,16]). The stresses were determined from the measured
d-spacings by a least-squares proceduret [17] The x-ray d-spacing
measurements yield the total stresses, a , associated with each phase.
These must be partitioned into microstressAs, Ao , (those resulting from
thermal expansion mismatch and macrostresses, aii, (those from machining):

(taiSi -C) ( A SiC ) + i j) (4)

(t aiTiB2) _ (ffiTi 2) .<m a3j) (5)

where the macrostresses are assumed to be the same in each phase. The

total microstresses must also sum to zero, such that

(lf)Kijisic ) + fK~aijTiB 2) - 0 (6)

where f is the volume fraction of the TiB2 phase. Solving Eqns. (4), (5)
and (6) simultaneously allows the microstresses and macrostresses of each
phase to be resolved:

aii SC) - f [(ta SiC) - (ta i 2 )] (7)

STiBi2 ) - (1-f) [(ta TiB2) _ (ta SiC)] (8)

(mij) - (1-f)(taijSiC) + f(taijTiB2) (9)

A difficulty of triaxial stress measurement by diffraction has been
the determination of a precise valve of d_. It has been shown that errors
in d give rise to an error in the hydrostatic microstresses. [18] In
contrast, errors of this kind will cancel out in the present measurements
when comparing the pre-stressed with the post-stressed material.

Rather than examining the total stress matrices in order to compare
the pre-loaded and post-loaded microstresses, the stress matrices are
better analyzed by examining the hydrostatic component of the stress.
However, one must first note that the stresses derived from x-ray
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diffraction analysis do not provide the true internal stresses. The a
component is influenced by the near surface effect, and should necessarily
be zero if stresses only at the surface are measured. However, the a
measurement represents d-spacing data collected from up to 50 microns, or
approximately 10 grain diameters below the surface. To supersede these
difficulties, an "effective" hydrostatic stress (defined as (a 1 + a 2)/2)
has been calculated and it is plotted in histogram form in Figure 2. It is
clear that the data represents definitive evidence for residual stress
relaxation on application of a stress in SiC-TiB2 as the microstresses drop
by nearly 50%. The SiC standard, in contrast, shows no significant change
in the average stress after loading. The present observations demonstrate
indisputable evidence for stress-induced microstress relief in a
non-transforming brittle material. These results are consonant with the
model of stress-induced microcracking in SiC-TiB2.

3.2 Microcracking in the Near Crack Tip Stress Field

The near crack tip region in conventional fracture mechanics specimens
provides a region to examine stress-induced process zone formation. The
crack opening displacement of microcracks in SiC-TiB2 composites is too
small to be detected by either optical microscopy or scanning electron
microscopy; the resolution of transmission electron microscopy is
necessary to explore any microcracking. Thin sections were cut from the
fracture surface of the SiC-TiB2 composite prepared from four depths from
the fracture surface of a double cantilever beam specimen. Details of the
TEM sample preparation are given in reference 19.

Microcracks can be identified by Fresnel diffraction using the
underfocus-overfocus process in the bright-field image.[201 Typical
microcracks occur at the boundaries between TiB2 and SiC (Figure 3(a)), due
to the thermal expansion mismatch described earlier, or between TiB2
particles (Figure 3(b)), due to thermal expansion anisotropy in the
hexagonal TiB2 structure. The former, however, are the more common. The
thickness enabling the image formation is about 0.1 pm and the crack
opening displacement Is about 26 nm. Therefore, it is necessary to rotate
the thin foil through various stereo angles to observe every microcrack.
The observable fraction of the solid angle for the double tilt stage which
is allowed to rotate from -300 to +30° is 0.29.

The distribution of microcrack lengths at different distances from the
fracture surface are similar in shape and are shown in Figure 4. The
number of microcracks increases dramatically as the fracture surface is
approached. The microcracks located at approximately 5 mm from the
fracture surface represent cracks produced during sampl] preparation,
either occurring spontaneously during cooling (based upon the conditions in
Eqn. 1) or through the ion thinning process, and will be treated as
background. Since the TiB2 particles are polyhedra and the microcracks are
generally located along grain facets of the polyhedra, a microcrack can be
reasonable treated as a penny-shaped crack. Hence, the microcrack density
parameter, e, may be defined as [21]:

3 2-- NA <t2> (10)
4w

where NA is the number of microcracks per unit area and t is the length of
the microcrack measured in the thin foil. The mean microcrack diameter is
approximately 2.8 pm and is independent of distance from the fracture
surface. This implies that the residual stress from the thermal expansion
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mismatch dominates the applied stress term. The profile of microcrack
density perpendicular to the fracture surface is shown in Figure 5. These
data are corrected for the fraction of the observable solid angle described
above. The microcrack density is said to be saturated; that is, all TiB2
particles have a least one microcrack associated with them, and e equals
0.53 near the fracture surface. Furthermore, from the limited data, e
linearly decreases with increasing distance from the fracture surface. The
microcrack density extrapolates to the background level at about 160 Pm if
a linear profile is assumed. Microcrack zones on the order of hundreds of
microns in a similar SiC-TiB2 have also been measured using small angle
x-ray scattering.[221

This quantitative examination provides unambiguous information to
evaluate microcrack toughening. It provides the first direct evidence of
stress-induced microcracking in a particulate non-transforming ceramic
composite by demonstrating the existence of a microcrack process zone.

3.3 Crack Bridging Behind an Advancing Crack

The fracture surface of SiC-TiB2 provides further insight into the
mechanisms which give rise to enhanced toughening in this system. As in
unreinforced sintered SiC (23], fracture in the SiC appears to be primarily
transgranular. However, TiB2 particles rarely fail transgranularly at the
crack tip in the materials studied. Upon examination of double cantilever
beam specimens interrupted during testing, there are numerous examples of
TiB2 particles acting as bridges spanning the primary crack (Figure 6). On
examination of samples during testing and prior to catastrophic failure on
unloading, the bridged grains were observed to be active nearly 3 mm from
the crack tip. At large distances from the crack tip, breakaway generally
occurs in the SiC matrix, or by complete pullout of the TiB2 grains. Given
these microstructural observations, the contribution of crack bridging to
the toughening by unbroken TiB2 grains must also be evaluated in addition
to the contribution of stress-induced microcracking.

4. The Toughening Analysis

4.1 Stress-Induced Microcracking

In order to assess the contribution of stress-induced microcracking, we
examine the model of Hutchinson.[24] Shielding from microcracking is
comprised of two contributions: shielding due to the reduced moduli and
shielding due to residual strain associated with the microcracking event.
For conditions where the crack is assumed to be steadily growing with a
zone of randomiy-oriented microcracks induced by a critical mean stress,
the shielding due to the reduced moduli can be written as

KI/K7 - 1 - 0.608 61 + 0.707 62 (11)

where K is the stress intensity factor at the crack tip, K is the
applied Istress intensity and 61 and 62 are given as

61 - 32 (5-v) e s/ [45 (2-v)]

and

62 - 16v (l-8v+3v 2) fs / [45 (2-v))
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where e is the saturated microcrack density.
Tht shielding contribution from the residual strain is of the form

1 E cos(3e/2)
K -K I - - f e 3/2 dA (12)

3,2w (1-Y) r

where 9 and r are the polar coordinates, e is the dilatation strain
associated with microcracking, and the integral is taken over the upper
half of the microcrack zone. We approximate the microcrack which forms
along a SiC-TiB2 facet by a prototypic microcrack which forms in the center
of a particle under a residual tensile stress. The dilatation strain may
then be written

e" - 16 (l- z,) c aR/ 3E (13)
R .

where a is the residual stress. The elastic mismatch between SiC and TiB2
is small, and therefore, neglected.

Substituting Eqn (13) into Eqn (12), we obtain

_16 R f cos(38/2)
K K - (l+V) a Ic (14)

I "2 J 3/26'V2i r

The above integral was evaluated numerically using the microcrack

distribution information presented in Section 3.2, and coupled with
R

calculations of a . The amount of shielding due to the residual strain
contribution for the SiC-TiB2 system is then computed to be -1.98 MPa/m.

The combined effects of the modulus reduction and residual strain derive
from Eqns. (11) and (14). However, to evaluate the toughening, one must

recall that a crack must now propagate through a medium of microcracks.

The reduced toughness of the microcracked material Km ahead of the crack
tip has been found to be of the form, [251 C

m/Kc- I - (15)

where Kc is the toughness of the microcrack free material and the value of

is 0.825. By setting K - K" in Eqn (14),. and equating K to the
toughness of monolithic SiC (3!22 MPaVm), K affords a prediction of the
toughness due to stress-induced microcracking. For the SiC-TiB2 examined,
the toughening due to stress-induced microcracking is approximately 2.14
MPa/m, on the order of half of the observed toughening.

4.2 Crack Bridging

We use the model of Campbell et al. [26] designed for
whisker-reinforced materials to examine toughening due to the bridging of
TiB2 grains. The steady state toughening can be written in terms of the
critical strain energy release rate, 9 , as

C

Alc/fd = S2/E - Ee + 4(ri/R)/(l-f) + (r/d)E(h 
2 /R) (16)

cT i ±iR
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where d is the debond length, eT is the misfit strain, r is the interface
fracture energy, R is the particle radius, f is the volume fraction of
reinforcing particles, S is the particle strength, r is the sliding
resistance, and h is the pullout length. The four terms represent,
respectively: the stored elastic strain energy in the reinforcement over
the microcrack length prior to failure, the residual strain energy within
the microcrack length, the energy needed to fracture the SiC-TiB2 interface
and the energy contribution to TiB2 pullout.

For particles under residual tension, the last term can be neglected
and we use Campbell et al.'s solution for reinforcements under tension
which are oriented normal to the applied stress:

A9c [( IA+X2d/R 2 " (EpeT/S)2 03 + A4d/R)2 ]/EP(A + X2d/R)

+ 4ffid/(-f)R (17)

The parameters, A , for i - 1 to 4 are coefficients used to describe the
matrix crack opening for a given value of modulus mismatch between the
reinforcement and the matrix. Any estimate of the toughening increment
will represent the toughening afforded from bridging only from grains
oriented parallel to the applied loading (i.e. no TiB2 grains are subject
to bending moments, and consequently, there is no effective frictional
pullout contribution). Further, these estimates are limited by the
reliability of our estimates of the bridge strength, S, and of the
interfacial toughness, r .

For estimates of the necessary parameters, we make the following
assumptions: First, the elastic strain energy component is highly sensitive
to the choice of reinforcement strength, S. As the TiB2 particles rarely
fracture in the wake, one would anticipate that the interface is
strength-controlling. The strength of the interfaces may then be estimated
to be bounded by the average residual stress, 1.6 GPa [19], since the
interfaces did not spontaneously crack on cooling. Second, the misfit
strain component is reduced from its theoretical value due to microcracking
ahead of the crack tip. We calculate an effective misfit strain based upon
microstress results from x-ray studies. Hence, the strain e is
approximately 50% of the microcrack-free value. Third, the Interfacial
fracture toughness (ro) is estimated to be of the order of SiC, i.e.
approximately 15 J/m , as an upper bound. Fourth, debonding only occurs
over the grain facet length less the average microcrack length. TEM
observations have provided data for the average microcrack length, 2.1 pm,
in this case. From the above assumptions, it is clear that the energy
contribution to fracture the SiC-TiB2 interface is dominant, though not
large (% 5.6 J/m2). The elastic strain energy and the residual strain
components are of nearly equal magnitude, though opposite in sign, and
nearly cancel. Converting A c to AKc, the toughening increment due to
crack bridging is equal to approximately 2.0 MPam. This value is of the
correct order of magnitude to account for the remainder of the fracture
toughening. However, the effect of interlocking grains (not oriented
parallel to the applied stress) and their effective frictional contribution
to the pullout are not accounted for and could result in additional
toughening.

10



5. Concluding Remarks

In the SiC-TiB2 composites studies, residual stresses are of a large enough
magnitude to cause stress-induced microcracking in the near vicinity of a

propagating crack. Both x-ray residual stress measurements and dire.t
transmission electron microscopy observations provide evidence for this
phenomenon. The total toughening, however, cannot be explained totally in

terms of stress-induced microcracking. Instead, contributions from crack
bridging are of the same order of magnitude as those from microcracking. A
likely scenario is one suggested by Amazigo and Budiansky [27] where the
bridging and process zone mechanisms are likely to interact. Specifically,

the bridged crack, which allows for a greater crack tip stress intensity,
will afford larger process zones. Direct measurements of the microcracking
stress are required to test this hypothesis.
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Figure 1. The coordinate system used in residual stress determinations.
The S 1-S2 surface represents the tensile surface of the SiC-TiB 2 bend bar.

13



(a)

Pre -Stress

Post-Stress

-80 -60 -40 -2o 0

Stress(MPa)

(b)

Pre-Stress

Post-Stress

0 100 200 300 400

Stress(MPa)

(C) 0

Pre-Stress

Post-Stress

-80 -60 -40 -20 0

Stress(MPa)

Figure 2. The effective hydrostatic stresses before and after loading for
(a) the SiC phase in SiC-TiBz, (b) the TiB2 phase in SiC-TiB2, and (c) the
SiC standard.

14



Figure 3. Transmission electron micrographs of (a) microcracks occurring on
the boundary between TiB2 and SiC and (b) a microcrack on the boundary
between two TiB2 particles.
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specimen.
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Figure 6. Scanning electron micrographs of bridging TiB2 grains behind the
crack tip ir. a SiC-TiB2 composite. Micrographs were taken during an
interrupted double cantilever beam test.
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CRACK BRIDGING PROCESSES IN TOUGHENED CERAMICS.*

Paul F. Becher

Metals and Ceramics Division
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Oak Ridge, Tennessee 37831-6068

ABSTRACT. The fracture toughness of ceramics can be improved by the

incorporation of a variety brittle discontinuous reinforcing phases.

Observations of crack paths in these systems indicate that these reinforcing

phases bridge the crack in the region behind the crack tip. Recent

developments in toughening models based on crack bridging processes in

such systems are discussed and compared to the experimentally observcJ

toughening responses with second phase whisker and self (matrix grain)

reinforcement. The bridging model then can be used to optimize the

toughening effects based modification of the pertinent material characteristics

(e.g., microstructure and physical properties).

Introduction

The brittle nature of ceramics has, over the years, prompted us to

explore a variety of approaches to increasing their fracture

toughness/resistance. Initially the concern was to toughen these materials to

to improve their fracture strength and/or reduce the flaw size sensitivity of

the fracture strengths. Then it was recognized that resistance to damage in

* Invited paper to be presented at the NATO Advanced Research Workshop on

Toughening Mechanisms in Quasi-Brittle Materials, Northwestern University,
Evanston, IL, July 16-20, 1990
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service was a further issue and that toughening these materials could

enhance their damage resistance. While many issues still need to be
addressed, e.g., cyclic fatigue resistance, crack size effects-R-curve behavior,
improving the fracture toughness has been deemed, in general, to be quite

beneficial.

One approach to toughening ceramics has been the incorporation of
strong discontinuous brittle phases, e.g., whiskers [1], which is the subject of
this paper. The mechanisms contributing to the increased fracture toughness
are described herein in terms of crack bridging by the reinforcement. A crack
bridging model is discussed which is found to accurately predict the observed
toughening response in SiC whisker reinforced ceramics [2]. The results
reveal that debonding of the interface between the reinforcing phase and the

matrix is required to achieve significant toughening. The bridging model also

illustrates how some of the properties of the matrix, interface, and reinforcing
phase influence the fracture resistance of the composite. The predictive

capability of the whisker bridging model then allows us to develop other
approaches to achieving toughness by crack bridging. These include crack

bridging by other types of second phases (platelets) and by matrix grains (self-
reinforced).

Crack Bridging By Discontinuous Reinforcements

Bridging of the crack surfaces behind the crack tip by a strong

discontinuous reinforcing phase which imposes a closure force on the crack
is, at times, accompanied by pull out of the reinforcement [1-61. The extent of

pull out, i.e. the pull out length, brittle discontinuous reinforcing phases is

generally quite limited due both to the short length of such phases and the

fact that bonding and clamping stresses often discourage pull-out. However,
pull-out cannot be ignored as even short pull-out lengths contribute to the

toughness achieved. Crack deflection by such reinforcements has also been
suggested to contribute to the fracture resistance. Often, out of plane (non
mode I) crack deflections are limited in length and angle and are probably best

considered as means of debonding the reinforcement-matrix interface. Such
interfacial debonding is important in achieving frictional bridging (bridging

by elastic ligaments which are partially debonded from the matrix) and pull-
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out processes. Frictional bridging elastic ligaments can contribute

significantly to the fracture toughness as is described herein.

ANALYSIS OF TOUGHENING BY DISCONTINUOUS BRIDGING PHASES

Here we will concentrate on the toughening due to crack bridging by
various brittle reinforcing phases where the reinforcement simply bridges the

crack surfaces and effectively pins the crack and increases the resistance to
crack extension. The bridging contribution to the toughness for is:

AI<' r = (Ec AJ)1/ 2 = KIc c _ KIC m

where KI c is the overall toughness of the composite, KICm is the matrix

toughness, and the term AJ corresponds to the energy change due to the
bridging process.

The energy change associated with the bridging process is a function of
the bridging stress/traction, Tu, and the crack opening displacement, u and is

defined as:
Umax

AJ = f T, du 2

0

where Umax is the maximum displacement at the end of the zone [7], Figure 1.

One can equate the maximum crack opening displacement at the end
of the bridging zone, Umax, to the tensile displacement in the bridging brittle

ligament at the point of failure:

Umea = F- ldb 3

where Ef represents the strain to failure of the whisker and ldb is the length of

the debonded matrix-whisker interface, Figure 2. The strain to failure of the
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AK = (2ECAJ)/ 2

BRIDGING STRESS
T ax

AJ= d

T Frictional
Bridging

by Debonded
Reinforcement

x --.

Figure 1. Crack bridging by discontinuous brittle reinforcing phases impose a

closure or bridging stress in the wake of the crack tip and enhance the fracture

resistance of the brittle matrix.
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whisker can be defined as:

Ef, = (;l / Et ) 4

where E' is the Young's modulus of the reinforcing phase. The interfacial

debond length depends on the fracture criteria for the reinforcing phase

versus that of the interface and can be defined in terms of fracture stress or

fracture energy. The analysis of Budiansky et al [81 yields:

ldb = (r '/6 Y ) 5

where / represents the ratio of the fracture energy of the bridging ligament

to that of the reinforcement-matrix interface.

From equation 3, one quickly notices that the tensile strain

displacement achieved in the bridging reinforcement and hence the

maximum crack opening displacement at the end of the bridging zone

increases as the debonded length/the gage length of the reinforcing ligament

increases. Consideration of equations 4 and 5 show that increasing the

reinforcing phase strength and/or enhancing interface debonding will

contribute to greater tensile displacement within the reinforcing ligament.

Increases in the crack opening displacement supported by the bridging zone

will enhance the toughening achieved by such reinforcements. Therefore

debonding of the matrix-reinforcement interface can be a key factor in the

attainment of increased fracture toughness in these elastic systems. In fact in

ceramics reinforced by strong ceramic whiskers, debonding is observed only

in those systems which exhibit substantial toughening. An example of

interfacial debonding associated with a bridging whisker in the wake of the

crack tip is seen in Figure 3. In this case debonding is evidenced by the

interfacial offsets at the leading and trailing sides of the bridging whisker.

For the case of a bridging stress which increases linearly from zero at

the crack tip to a maximum at the end of the bridging zone and immediately

decreases to zero, equation 2 can be reduced to Tma×(umax)/ 2 . The maximum

closure stress Tmax imposed by the reinforcing ligaments in the crack tip wake

is the product of the fracture strength of the ligaments, oft, and the aieal
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~b] h2r

CRACK OPENING u (=Umax) AT THE END OF BRIDGING
ZONE EQUATED TO MAXIMUM WHISKER TENSILE

DISPLACEMENT ( LDB rw).

Figure 2. The formation of the bridging zone behind the crack tip requires
that the reinforcing phase-matrix interface separate/debond (a) during
fracture. The crack opening displacement associated with the bridging zone
then is related to the tensile displacement in the bridging ligaments (b). At
the end of the bridging zone the maximum crack opening is equivalent to the
displacement in the ligament corresponding to its fracture stress.

24



i ~Whisker.. .-

INTERFACE DEBONDING

Figure 3. Debonded whisker-matrix interfaces are associated with whisker
bridging in region immediately behind the crack tip in a polycrystalline
aluminum oxide matrix.
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fraction of ligaments intercepting the crack plane, A1 :

Tma× = Of' A - Of V 6

where A! is approximated by the volume fraction, V , for ligaments which

have large aspect ratios (e.g., l/r >30 for whiskers). Reinforcement by
frictional bridging introduces an change in energy equal to:

Ai lb = [ of' V (oft/EMW(r / y)]/12 7.

From these results, the resultant toughness contribution from frictional
bridging by the reinforcing phase in the crack tip wake is:

AKfib = Of' [ (r /36) (Ec / E)(y / y )]1/2 8.

The overall toughness of the composite then includes both the bridging
contribution, equation 8, and that the fracture resistance of the matrix per
equation 1.

MATERIAL CHARACTERISTICS INFLUENCING TOUGHNESS

The toughening contribution then can be enhanced by utilizing matrix-

reinforcing phase combinations with comparable Young's moduli and by
improving the strength of reinforcing phase and increasing the
reinforcement content and diameter. There are obvious limits as to how
large a diameter reinforcing phase can be used in systems employing a matrix
with a thermal expansion coefficient greater than that of the reinforcement as

the thermal contraction mismatch tensile stress intensity scales with increase
in inclusion/reinforcing phase diameter. In the alumina-SiC whisker system,
the larger thermal expansion coefficient of the matrix versus the whisker and
the high elastic property values result in substantial hoop and longitudinal

tensile strains in the matrix [3,91. Larger diameter reinforcements can
generate matrix crack during post-fabrication cooling and degrade the
properties of such composite [101. The maximum reinforcement diameter

employed will depend on the elastic and thermal expansion properties of the
matrix versus those of the reinforcing phase.
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A critical factor in such toughening processes is interfacial debonding
which can be achieved if the interfacial failure conditions are much less than
those required to fracture the reinforcement. In fact, substantial toughening
by such crack bridging is obtained only when the reinforcement-matrix
interface debonds before or just as the main crack tip reaches the interface.
The formation of a debonded interface spreads the strain displacement
imposed on the bridging reinforcement ligament over a longer gage section
generating a larger crack opening displacement per unit of stress supported by
the ligament. As a result, the bridging traction/stress supported by the
reinforcement increase more slowly with distance behind the crack tip, and a
longer bridging zone is developed behind the crack tip. The resultant increase
in crack opening displacement with distance behind the crack tip due to
interfacial debonding, equations 3-5, significantly enhances the fracture
resistance/ toughness of the composite.

At this point, this model of the frictional bridging contribution by
discontinuous brittle reinforcing ligaments provides a very useful means of
designing such composites and analyzing their response. One can, at least,
characterize those properties which are most important when selecting
materials, and then systematically dissect the toughening response of
composites to either uncover problem areas or to develop advanced systems.
The bridging ligament model can be further refined by including a pull-out
contribution and by addressing the response and contribution of whiskers
which are inclined to the crack rlane. In fact, the simple crack bridging model
describe here and the effects of , einforcement by brittle whiskers have been
successfully applied to a variety of oxide (including glasses) and nonoxide
matrix ceramics.

Observed Toughening By Crack Bridging Processes

Several types of discontinuous brittle reinforcements have been
successfully employed to form toughened ceramics including second phase
whiskers [1-6] and platelets [11-13] and both elongated [14-17], plate-like [18]
and large [3, 19-221 matrix grains. Studies of cracks in such materials reveal
that, within the wake of the crack tip, the reinforcement does bridge the crack.
The following sections will describe the observed toughening response in
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whisker reinforced ceramics, ceramics with both elongated grains and larger
grains, and when such bridging processes are combined in a composite.

Crack Bridging by Brittle Whiskers

The experimental fracture toughness results obtained to date confirm
the various features of the model for crack bridging by these discontinuous
brittle reinforcements [2] as shown in Figure 4 which compares experimental
data with predicted curves based on equation 8. These results are based on a
specific SiC whisker of a given strength and diameter. Thus Figure 4 reveals
several features. First that the whisker bridging toughening contribution,
AKu'r = AKfLb, does increase with volume/areal content of the reinforcing

phase as predicted. Second, the toughening contribution also increases as the
ratio of the composite's Young's modulus to that of the whisker increases.
This best illustrated by the increase in AKWr with increase in Ec at a given

whisker content. For the examples here, Ec values were obtained by rule of

mixtures [E' = Em(1-Vf) + EWVf 1; thus at a constant volume fraction of

whiskers, E' increases in the order from glass (E' = 80 GPa) to mullite (Em=
210 GPa) to alumina (Em= 400 GPa) vs SiC (V= 500 GPa).

These same experimental observations [2] also show that the whisker
bridging toughening contribution, AKf b, increases as (r, the whisker
radius)11 2 increases as predicted by equation 8. For example, the toughness of

alumina composites containing 20 vol % SiC whiskers, increased from -6.5 to

-9 to =12 MPa '/m when the mean diameter of the SiC whiskers increased

from 0.4 to 0.75 to 1-1.5 microns, respectively. From the toughening model,

we also expect the toughness to increase as the matrix-whisker interface
fracture energy (strength) decreases with respect to that of the whisker (y,
substituted for Y). While, values of the ratio of the whisker to interface
fracture energy (,// Y ) are not available there are two observations which

support the predicted behavior. First, whisker-matrix interfacial debonding
and crack bridging by the whiskers are only observed in the composites

exhibiting significant toughening. Second, the length of the whiskers
protruding above the fracture surface increases with increased toughening
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and this length can be related to the interfacial debond length. These

findings indicate that the bridging contribution does indeed increase with

increasing whisker diameter and when the fracture energy (and) of the

interface decreases with respect to that of the whisker.

Matrix Grain Bridging: Grain Shape Effects

Crack bridging phenomena and toughening effects which are very

comparable to those observed in whisker reinforced ceramics are also found

in ceramics containing other reinforcing phase geometries. For example in

the development of more thermal shock resistant electrical insulator,

alumina ceramics which had microstructures which contain large (-100-200

pLm across by -10 gam thick) plate-like alumina grains in a medium sized (-5

micron) equiaxed grained matrix. These materials had excellent thermal

shock resistance; in fact, their thermal shock resistance was much greater than

any of the variety of ceramics tested including zirconias, various other oxides,

silicon nitrides, and aluminas with equiaxed grains. Further examination

showed that fracture toughness values were -7 MPa V'm for samples

containing - 25 vol % of these large single crystal alumina plates [181.

Aluminas prepared at the same time but with only equiaxed grains which

were- 5gm in size had toughness values of only 4-4.5 Ma 4dm. Observations

of the crack paths in the alumina containing the plate-like grains revealed

that cracks deflected along the interface between the matrix and the large

plate-like grains. This produced plates which bridged the main crack and

contributed to the high toughness in much the same manner as SiC whiskers

do.

The logical extension of this is to consider whether or not crack

bridging by second phase platelets contributes to fracture toughness.

Composites consisting of an equiaxed polycrystalline matrix of TiO2 in which

alumina platelets are dispersed also exhibit increased fracture resistance as

described by Hori et al. [11]. This work shows that under conditions where the

platelet dimensions remained fairly similar that toughness increased with

platelet content leading to nearly a three-fold increase at 30 vol % of alumina

platelets. Initial studies also reveal that SiC platelets can produce similar
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increases in toughness in alumina as do SiC whiskers [12]. Each of these

composites give evidence for crack bridging by the reinforcement.
In this same vein, reinforcement of Si3N 4 [14-16] and SiAlON [171

ceramics by the in situ growth of elongated or whisker-like grains is also a

potent toughening approach resulting in toughness values of >10 MPa 4m.

Such materials have been labeled as self-reinforced and from the crack

observations of Li and Yamanis [15] crack bridging by these grains contributes

to the improved toughness. Sufficient additional experimental results exist

to begin to test how well the current crack bridging model describes the

toughening effects of such elongated grains. First, Tajima et al. results show
that the toughening contribution, AKf b, increases with increase in volume

content of the elongated grains [23].
More recent observations also reveal that AKf lb increases with increase

in the cross section of the elongated grains, Table 1. In fact the authors plotted
the data in the form of AKfLb versus the square root of the diameter of the

elongated grains [24]. The resulting plot exhibit excellent fit to the behavior
predicted by equation 8. The diverse sources of observations then would

support crack bridging by the elongated grains as the toughening process in

these silicon nitide cerfamics.

Matrix Grain Bridging: Grain Size Effects

In the present discussion, grain size effects on toughness are related to

bridging ligaments formed by matrix grains which are left intact behind the

crack tip [3, 19, 21, 25]. The toughening analysis is analogous to that for the

whisker reinforcement described above. However here the bridging stress

supported by ligaments formed by microcracking along grain boundaries is

product of the frictional stress required to pull out each bridging grain times
the fraction of bridging grains, fgb Zgb. The grain bridging zone length is

dictated by equating the crack opening displacement at the end of the zone u

to that required to completely pull out the bridging grains. Assuming that

half the grain must be pull out to disrupt a ligament, u will be equal to one

half the grain size (d), and the incremental increase in fracture toughness due
to grain bridging AKgb is:
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Agb = IbTbE(d21/9

yielding a grain bridging toughening contribution consistent with
experimental observations [3, 18, 211 at grain sizes below those resulting in
spontaneous nicrocracking [18]. As noted in Figure 5, the grain size
dependence of the fracture toughness of alumina ceramics is consistent with
this behavior.

Table 1. Fracture Toughness of Silicon Nitride Ceramics With Elongated
Grain Structures.+

Diameter of Elongated Grains, Fracture Toughness,
gm MPa "lm

2.8 5.7

3.5 6.4

4.5 7.0

7 8.3

8.7 9.0

10-11 10-11

+ Data taken from results of H. Okamoto and T. Kawashima, NKK Corporation,
Kawasaki, Japan.
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Figure 5. The fracture toughness of alumina ceramics is enhanced by increase
in the matrix grain size.

33



Conclusions

Reinforced ceramics including reinforcement by strong whiskers
initiate crack bridging processes to achieve improved fracture resistance.
Similar toughening processes and effects are achieved by changes in grain size
in noncubic ceramics, and/or by altering grain shape, e.g., formation of
elongated grains in Si3 N4 and SiAION and plate-like grains in alumina
ceramics. These reinforcing phases can contribute considerable toughening to
brittle ceramics; factors of three increases in the fracture toughness are not
uncommon.

The bridging processes involve frictional bridging where the matrix-
reinforcement interface debonds which allows the reinforcement to elastically
stretch over some finite gage length hindered only by frictional sliding against
the matrix. The contribution of pull-out of these reinforcements to the
toughness is rather limited; in part, due to their limited pull-out dimension.
Enhanced interfacial debonding leads to greater toughening effects in these
systems by promoting the crack opening displacement supported by the
bridging zone. The amount of toughness realized is dependent upon the
properties and characteristics of the reinforcing phase and the interface as
described by the micromechanics models developed for these systems. The
model for frictional crack bridging reveals that the bridging contribution to
the toughness is a function of the whisker strength, diameter, and content, as
well as the ratio of the whisker to interface fracture resistance, and the ratio of
the composite to whisker Young's moduli. The predicted effect of these
parameters are supported by experimental observations for SiC whisker
reinforced ceramics.

Extension of the micromechanics model of toughening by crack
bridging reinforcements illustrate the importance of considering other
reinforcements including second phases and changes in matrix
microstructure. Experimental results confirm various aspects of the
toughening response due to crack bridging resulting from grain size and grain
shape changes in alumina and silicon nitride ceramics. These finding suggest
a variety of approaches may be possible to obtain improved fracture
toughness in ceramic and other brittle systems by incorporating reinforcing
phases which can generate crack bridging mechanisms. Such processes can be
combined with each other or with other toughening mechanisms to deveiop
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synergistic toughening effects. The approach described here offers a means of

developing these materials by considering the material

characteristics/parameters which control the crack bridging contribution.
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ABSTRACT

The crack closure stress versus crack opening displacement (COD) associated with
the fracture process zone (FPZ) in concrete was determined through a hybrid
experimental-numerical procedure. COD measurements, which were obtained by moire
interferometry. of subcritically growing cracks were used interactivelv with an elastic
finite element model of the concrete specimen to back out the above constitutive relation
by an inverse analysis. A constitutive relation, which is similar in form but greatly
different in magnitude, was also used to characterize the FPZ associated with stable
crack growth in SiCw/A1203-matrix ceramic composite. Similarity in the genesis of the
FPZ's in concrete and ceramics is discussed.

INTRODUCTION

Research on concrete fracture during the past decade [1-7] has shown the existence
of a fracture process zone (FPZ) ahead of a macro crack tip of concrete where microcracks
form and coalesce. For mode I fracture, the behavior within the FPZ can be described by a
crack closure stress, a, vs crack opening displacement (COD), w, relationship which can be
determined from the decreasing strain-softening portion of a direct tension test [3,4].
When incorporated into a finite element model, these a-w curves can be used to predict
the overall fracture strength and to simulate the progressive damage process of a
fracturing concrete structure.

Crack closure stress has also been identified as the primary toughening mechanism
in similar FPZ ceramic composites [8-12]. However, a constitutive relation, which
quantifies the crack closure stress versus COD relation, as described above, has not been
studied by others.
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The authors and their colleagues have been studying the FPZ's associated with stable
crack growth in concrete and ceramics using an inverse analysis based on finite element
models of concrete and ceramic fracture specimens. Part of the ambiguity associated
with the inverse analysis was removed in their recent studies using a hybrid analysis
which incorporates the measured COD's by moire interferometry. These results are
discussed in the following.

FPZ IN CONCRETE FRACTURE SPECIMENS

The theoretical background and the experimental details of the hybrid-inverse
analysis used to study the FPZ of concrete fracture specimens can be found in [13-15].
Concrete specimens of two different geometries, the crack-line wedge-loaded, double-
cantilever beam (CLWL-DCB) specimen shown in Figure 1(a) and the three-point bend
specimen shown in Figure 1(b), were analyzed. Figures 2 and 3 show typical moire fringe
patterns in the WL-DCB and three point bend specimens, respectively. Figure 4 shows the
wedge load versus COD, 2V1 , relations of four CLWL-DCB specimens. Figure 5 shows the
load versus load-line displacement relations of four three-point bend specimens.

Figure 6 shows the o versus w relation which were obtained after several iterations
in the optimization process of the inverse analysis. The three line segment model, which
were used in previous studies [1,2], was replaced with a smooth varying o-w relation as
shown in the caption of Figure 6. This constitutive relation with only two disposal
parameters of a and 13 simplified the iteration process used in the inverse analysis. The
coincidence between the three line segment model and the continuous model is remarkable
considering the fact that the two models were derived from different concrete specimens
using different computer codes.

Figures 7 and 8 show typical comparison between the COD's which were computed by
using the optimized finite element model with the a-w constitutive relation of Figure 6
and those obtained by moire interferometry. The computed load versus load line
displacements and the wedge load versus COD relations are shown as data points in
Figures 4 and 5, respectively. The excellent to good agreements between the measured
and computed values validate the finite element model of the concrete fracture specimens
with the FPZ constitutive relation of Figure 6.

FPZ OF CERAMIC COMPOSITE

A similar hybrid-inverse analysis was used to study the FPZ in three-point bend
specimens machined from SiC-whisker/A12 0 3 -matrix ceramic composite [161. Moire
interferometry could not be used in high temperature testing and thus was replaced with
crack mouth opening displacement (CMOD) measurements using laser interferometric
displacement gages (17,18]. Figure 9 shows the specimen geometry used in this study.
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Figure 10 shows the FPZ constitutive relation for SiCw/A1203 ceramic composite
fracture specimen tested at 12000 C. Figure 11 shows the load versus CMOD relations
which were obtained experimentay and from the finite element model with the FPZ
constitutive of Figure 10, Again, the excelient agreement between the two results
validate the FPZ model used in this study.

The same hybrid-inverse procedure was used to determine the crack growth
resistance crack extension, aa, relation for SiC-whisker/alumina-matrix composite. The
specimen is a wedge-loaded, double cantilever beam (WL-DCB) specimen with a chevron
notch along the entire length of its remaining ligament as shown in Figure 12. This
fracture specimen is inherently rigid and is thus suitable for stable crack growth study of
brittle materials. Crack growth is confined to the entire chevron notch plane without the
annoying crack curving which is prevalent in ceramic DCB specimens without side grooves.
The friction force at the loading pin and the location of the crack tip, which is not
observable, in addition to COD variation in the FPZ, are the unknowns which cannot be
measured directly.

A hybrid experimental-numerical procedure was thus developed to determine these
quantities as well as the stress intensity factor of the stably growing crack. Moire
interferometry was used to determine the displacement field on the side surface of the
WL-DCB specimen. Figure 13 shows a typica! moire pattern representing the lateral
displacements on the side surface of the chevron-notched specimen. The measured
horizontal displacement at the loading pin, together with the measured pin-load, were
input to a three dimensional finite element model of the WL-DCB specimen. An assumed
crack front, which is estimated from the moire fringe pattern, is used in the first
iteration and this crack front was adjusted in subsequent numerical analyses until a
reasonable match between the computed and the side-surface COD's, from the moire
fringes, were obtained.

Figure 14 shows the a versus w relation used in this study. Figure 15 shows the COD
measurements and the computed COD's, one without the FPZ and identified as (LEFM) in
this figure and one with the FPZ which is identified as (FPZ) on the exposed side surface
of the fracture specimen. The notable difference between the computed COD's with, and
without, the FPZ and the discrepancy with the measured surface displacement, is noted.
These results validate the FPZ constitutive relation shown.

CONCLUSIONS

The FPZ constitutive relations for concrete and SiCw/A120 3 ceramic composite are
similar in form. The crack closure stress for SiCw/A12 0 3 ceramic composite was two
orders higher than that of concrete while the COD's were comparable in magnitude.
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Figure 13. Moire Fringe Pattern of Chevron Notched DCB Specimen.
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MICROCRACKING AND DAMAGE IN CONCRETE

D.FRANCOIS. CNRS. URA 850
ECOLE CENTRALE DE PARIS. F92295 CHATENAY-MALABRY CEDEX

ABSTBRECg

Microcracks opening and propagation by successive steps
provide concrete with a non linear behaviour and increase the
fracture toughness with respect to the hardened cement paste.
Several criteria were proposed for the propagation of microcracks
Damage mechanics is an efficient tool to meodelize the behaviour of
concrete. The damage is related to the strain. Various expressions
were proposed for this relation. This evolution is related to the
opening and to the propagation of microcracks through their
influence of the compliances of the material. Extension of these
models can be given in the case of fatigue, where the viscous
behaviour of concrete must be taken in consideration. A new model
is proposed. Lastly numerical models provide a better understanding
of the behaviour of concrete and of the effect of structural
parameters.
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1 - Microcracking in concrete

The cracking of concrwte was studied and described by many
authors for instance, (Slate and Hover, 1984). Let's simply recall that
before any loading this material contains many defects and
microcracks. In the cement paste porosities are present. Their sizes
are distributed over a wide range and when they are observed at
different scales, the appearence remains the same. The cement paste
is a fractal object whose dimension is equal to 2.90 to 2.97. (Regourd,
1986). The density is lower near the aggregate interface, in the
"aur6ole de transition", and moreover this feature is accentuated
under the aggregates.

Microcracks exists at the interface between the aggregate and
the mortar, mostly underneath the aggregate. They are due to
bleeding and to internal stresses coming from the mortar shrinkage.

There are also longer cracks at the surface which are produced
by the shrinkage from drying.

When the concrete is loaded, at some critical stress the cracks at
the aggregate interface, propagate through the mortar until they
meet an aggregate boundary where they are stopped. It is not until
further loading that they can propagate again and produce the final
fracture. It is this two steps propagation which somewhat lessen the
brittleness of concrete, if compared with the mortar. As the cracks
are stopped before final fracture, their opening increases the
deformation, producing a non linear stress strain curve and offering
a way to reduce the stress concentrations at the macroscale.
Furthermore this diffuse cracking absorbs energy and this increases
the toughness of the material. At a smaller scale the same can be
said of the mortar compared to the cement paste.

This behaviour of concrete leads quite naturally to a description
in terms of damage mechanics.

If a connection is sought between the macroscopic behaviour
and the physical processes of crack propagation at the microscale, a
crack propagation criterion is needed.
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2 - Crack propagation criteria

Cracks in concrete are loaded in mixed mode I and II. For a
crack which propagates in its own plane, with no deviation, several
propagation criteria can be written.

The Griffith criterion, which states that the strain energy release
rate Gls equal to a critical value Gic yields :

G = Glc or K1
2 + K11

2 = KIC2

K I and KII being the stress intensity factors in mode I and II
respectively, it is the criterion which is the most satisfactory from a
thermodynamics point of view.

The normal stress criterion, which is based on the idea that the
propagation will start when the normal stress on the propagation
plane reaches a critical value yields simply

KI = KIC
because the mode II loading does not produce any normal stress on
the plane of the crack.

The maximun principal stress criterion yields
K + Kl1 = KIC

The criterion of the strain energy density proposed by Sih
(1973) yields :

22 KI 2
KI + I - KIC

1 - 2v

where n in the Poisson ratio. It is equivalent to a maximum strain
criterion in that case.

The question becomes more confused when the crack is allowed
to branch. The Griffith criterion is now very difficult to use because
there is no simple relation between the strain energy release rate
and the branching angle.

The normal stress criterion is the most likely. It gives now the
following equations : (Di Tommaso, 1984)

Ki sin 00 +K11( Cos0 0- 1)= 0
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where 00 is the crack branching angle.
When the normal stress on the crack is compressive, it can still

propagate if the shear stress is high enough with respect to the
friction force on the crack faces. The condition can be written.

f being the friction coefficient.
Another complication comes from the cracks lying at the

interface between two dissimilar materials. A solution to this
problem exists (Di Tommaso, 1984) Depending on the ratio of the
shear moduli and on the stress applied on the interface the crack
propagates in the interface or branches into either the aggregate or
the mortar. The tendency is for the cracks to propagate into the less
rigid material. Thus in normal concrete they will not cross the
aggregates, whereas this can happen in light weight concrete or in
high strength concrete.

3 - Damage mechanics models.

The microcracks decrease the effective area of the material
which carries the load. A damage parameter can be introduced,
defined as the ratio between the effective area and the total area. It
is an increasing function of the number of cracks and of their sizes.
As there are cracks allready present in the concrete before any
loading, there is an initial damage present. It then increases when
loads are applied.

Another definition is to relate the damage parameter to the
decrease of the elastic moduli. owing to the opening and to the
propagation of microcracks.

In any case, the development of the cracks is not isotropic and it
is obvious that the damage must be rigourously defined as a tensor.

It seens better to relate the evolution of the damage to the
strain rather then to the stress. The crack propagation, whatever the
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criterion used, is produced by a local stress, included in the Kj and
KII stress intensity factors. However on a macro scale, microcracks
can propagate even when K, and KII are equal to zero. It is the case
in a compression test where cracks open parallel to the load axis.

This of course is due to local stress fluctuations at the microscale
and this would never happen in a perfectly homogeneous material.
Back to the macroscale this damage can be related to the Poisson
expansion of the concrete under compression.

But there are some thermodynamics arguments to support this
idea. If the thermodynamics potential is y, the damage evolution
force Y, i.e. the damage associated variable, is given by

y

For an elastic material such as concrete
1 1 M _ (1 -D): C
2 2 20

where M represents the matrix of the elastic moduli. The damage D
is defined as an evolution of this matrix. In such a case

is purely related to the deformation and so it must be the same for
the evolution of damage which is a function of Y.

Another way to look at it is to consider the strain energy release
rate G which is the microcracks driving force. It can be expressed
either as a function of the load or of the deformation. In the first
case G is damage dependent, whereas, this parameter does not
appear in the expression of G as a function of the deformation.

In a way this reflects the interaction between microcracks, an
effect which is seldom taken in consideration.

The different behaviour of microcracks according to the sign of
the normal stress shows that it is not possible to use a single law of
evolution for the damage.

In the most general case there could be 21 components of the
damage tensor as there are 21 elastic moduli. Simplifications are
introduced the most stringent being to simply use a scalar.
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Considering that the concrete is an orthotropic material, reduces
the number of components to nine (Collombet, 1985; Pijaudier Cabot,
1985), To identify and to use such a model remains costly.

More simply Karihaloo and Fu (1990) proposed to use two
parameters D1 1 and D2 2 to describe the damage in two dimensions,
in the principal strains directions. Using the equivalence of
complementary energy of the damaged and the equivalent elastic
material these authors give the effective compliance tensor S* as

1 1 1

F(1- D11)

S* 1212= S2121 =- V
0- D1 1 )(1 - D2 2)

S* 2 2 2 2  2
I-1l D22)2

They further give the evolution law as
C

hC

D 2 2 =[A +B(0 2 2 / ail)] e 2 2 - C22

where A = 150 ± 10, B = 40 ± 5, and C = 0.8 ± 0.02 F1 11h and S 2 2 th

are thresholds, which depend on the concrete and below which there
is no damage. According to experiments of Kaplan (1963) who
measured the strain at first cracking (in micro strain)

th 2 3 4 5
E1 I=79.5(±6)+43.4V - 406.1V +707.2V - 1150V +763V

where V is the volume fraction of coarse mix. This model of damage
cannot describe cases where one of the stress comporment is
compressive.

Mazars (1984) took this problem in consideration but taking the
damage as isotropic i.e. as a scalar. In a first version (Mazars, 1986
a) an equivalent deformation threshold is introduced, this equivalent

deformation being defined as <ej > where ES are the principal
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positive strains. The evolution of damage differs in tension and in
compression. Another version (Mazars, 1986) introduces an
unilateral damage by partitioning the stress tensor in two parts, a
built with the positive eigen values and a- with the negative ones.

Keeping only two damage scalars D t and Dc the behaviour of the
damaged concrete is described as :

SI [(o +Vo + I-Vjtr) + 1 [@+vj&- Vjtra)o)i
Eo (I1-Dr) Eo (I1-Dc)

The corresponding damage extension forces ar

2I [(+V{3Y, (. j( - )2 -c (I +2V o)(tr.+)]
Yt 6E0  (I -D )2 II

and the same expression for Yc replacing a+ by a-.
The evolutions of the damage parameters are given on loading

by

lDt _/Yo(1 - at) + abt

Yt 2(Yj)3 /2 2 V-Yte x 4b t(Vy-h1];Y

and a simular expression for D c.

where V7 and are thresholds, at, bt, ac, bc  material
parameters.

The damage parameters remain constant when unloading. In
such a model the material keeps the memory of the previous
damage in cyclic loading.

4 - Relation between the damage and the microcracks.

The relation between the damage parameters and the
microcracks comes from the influence of their propagation and of
their opening on the compliances of the material.

For a penny shaped crack of radius a under a normal stress 0,
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the crack discontinuity b is given by
b =(a 2 - r2)1/2 8 (1-v2).o

rcE
whose average is :

-- " . coa

3E
This shows that the presence of such a crack introduces an extra

2-
strain na b / V, V being the volume of the material. The compliance
is increased proportionally to the cube of the crack size. If it
propagates a strong non linear effect appears.

Karihaloo and Fu (1969) remind that the effective moduli of a
material containing voids can be computed as :

Ctijkl=CiJmn lmnkl- fp(Imnkl- Smnki) 1I
where f is the volume frection of voids, and SiJk Elshelby's tensor,
which depends on their shape. This expression can give the
evolution of damage as a function of strain when there is no
propagation of the defects nor nucleation of new voids. In the case of
an orthotropic material under plane stress condition they fr.1 a
damage evolution which displays a similar behaviour as the one
given before.

Dii= A +Boii+C 2 2 / 03C ()2 - v / C)

Ev being the volumetric strain.
In the case of an evolution of the population of voids, the

effective moduli can be computed, as a function of f and of Sijkl.
In a similar fashion Krajcinovic and Fanella (1986) built a model

in which initial cracks occupy a fraction of the aggregate mortar
interfaces. Their sizes and orientations are randomly distributed.
When the load is increased a few cracks will suddenly grow to a size
equal to that of the aggregate. Then more and more cracks jump in
this way until one crck will propagate in the mortar, this being
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considered as the final failure. It is possible to calculate the damaged
compliances which are a function of the size distribution of the
aggregates and of the applied load. Similar calculations were
proposed by Nobile (1986).
S - Extension to the fatigue of concrete.

The previous models are based on th- ,penizg and on the
propagation of microcracks in concrete on loading. In those models,
unloading is purely elastic. When loading again the microcracks
would recover exactly the same configuration as before and the
cycles could then be repeated over and over without any evolution.
The only way to explain the fatigue of concrete is to take in
consideration its viscous behaviour. Under constant load this
material creeps. This could be due to water migration in the mortar
and to slow growth of the microcracks. At each cycle of loading some
irreversible deformation accumulates.

Tait and Garrett (1986) showed for example that the fatigue
crack propagation in mortar could be correlated to the static crack
growth rate under constant stress, checking a relation established by
Evans and Fuller (1974).

Hu (1990) jsed this idea to study the evolution of fatigue
damage in concrete. He writes the evolution of the sizes of a
microcrack population obeying a Weibull statistics. Each crack grows
according to the law :

da /dt = AKIn
In this way the evolution of the fracture probability can be

evaluated as a function of time. This can be done either with a
constant stress or with a cyclic stress.

However this model is based on the concept of the weakest link
and it should apply to a single phase material, such as hardened
cement paste containing a population of cracks. For concrete the
detailed description of the microcrack behaviour could be the
following : slow growth of the cracks at the interfaces of the mortar
and the aggregates until they reach a critical size at which time they
jump accross the whole interface and stop. This critical size is a
function of the local stress. This first phase produces a decreasing
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demage rate because as time goes on more and more cracks have
reached the critical size. The next step will be the branching of the
microcracks into the mortar and their slow growth into an
orientation which favours mode I. When they reach a critical size,
they propagate quickly until they meet another aggregate where
they stop and grow slowly. This phase will correspond to an
increasing damage rate as the K1 factor on each crack keeps
increasing because K I can be written :

KI= YaW

Each crack grows according to the law
I I n - 2 - Y n c n t- A 1ot
n-2 n-2 2
a2 a

The time for an individual jump of a crack to the next aggregate
is thus proportionnal to CF-n.This would give a viscous behaviour for
concrete characterized by :

n

We can now build a fatigue model for concrete having such a
viscous behaviour. We consider that the material is decomposed in N

elements each having a fracture strain 8 R which is distributed

according to a Weibull law. For a strain 6 the proportion of broken

elements is
NR / N = I1- exp[- Eo)rn

We can take the damage parameter as this ratio NR/N. We can
now write the stress strain law as

F-=1;/ a. (I - exp(e/ Co)rnn
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During one fatigue cycleJ E + Ac/A&N 
t+T/2

C exp [- (E / e)mnde=f (a/,)ndt
t

This quantity is constant and equal to (Ae/AN) 0 at the beginning
of the test. After N cycles we will have a strain accumulation such
that f x p[. -r ej omnde =N (Ae:/ AN ,)o

0

Or else • ( / -L dx = N (A/ AN)oo

This function is such that for a very large number of cycles the
strain per cycle remains almost constant. A very fast acceleration

occurs for C = SEo , when :

f exp (- x dx i = N R (AF-/AN)o/E o

This model yields a life time which varies as e0 (Ae/AN)0 . In a

tensile test a strain e equal to eo corresponds to a damage equal to

0.93, so that e. can be considered as the fracture strain.
Experimentaly it was found that the strain increased at each

cycle, in a manner which is well represented by the model (Alliche,
1990).

A simplified version consists in using a damage parameter the
increase of which for one cycle is proportionnal to the increase in
strain.
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6 - Numerical models.

The complex structure of concrete led many authors to use
numerical simulation to study the evolution of damage in concrete.
The best known example is due to Zaitsev and Wittmann (1983).
Other computation were published (Hu, Cotterell and Mai, 1986;
Zaitsev, Kondrashenko and Arshabov, 1986; Roelfstra and Sadouki,
1986). They start from a certain distribution of initial cracks at the
interfaces of the mortar and the aggregates and by introducing crack
propagation criteria they follow the growth of the damage in a 2D
structure. Roelfstra and Sadouki (1986) put special elements at the
interfaces to simulate crack initiation.

A somewhat different numerical analysis consists in introducing
random fracture resistances in the finite element mesh (Rossi and
Richer, 1987).

A somewhat different approach was used by Schorn (1986) who
modelized the concrete by a series of struts with random fracture
resistances. This kind of model is also developped by De Arcangelis
et al. so as to study the size effect. They found a master load-
displacement curve if both the load and the displacement are
divided by the size L of the elements to the power 3/4.(in a 2D strut
system).

Besides this possibility to test the size effect, the better
understanding which the visualization of damage can bring,
numerical concretes constitute good models to test the influence of
various parameters.

In this way for instance Zaitsev, Kondrashenko and Arshabov
(1986) found that a large heterogeneity of the structure lowers the
strength of light-weight concrete, that it decreases drastically when
the resistance of the interfaces drops below the resistance of the
mortar, and, most of all they showed the detrimental effect of the
porosity of the light-weight aggregates.'
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7 - Conclusion.

A great deal of progress has been achieved in the understanding
and in the modelization of such a complex, multiscale system as
concrete. Damage mechanics, its relation with the influence of voids
and microcracks on the compliances of the material, numerical
modelling can help to predict its behaviour and the influence of
various structural parameters. It seems that the models that are
needed must incorporate a damage tensor the evolution of which is a
function of strain, the viscous behaviour of concrete (or the slow
crack growth) a statistical distribution of strength or of microcracks.

Experiments are still needed to better understand the fracture
criteria of an individual microcrack in mixed mode, depending on its
exact location, on the nature of the aggregate. A more exact
knowlege of slow microcrack growth needs also to be obtained. This
would allow more precise modelizations.
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1. Introduction

The quasi-brittle behaviour of crustal rocks has many
aspects in common with the processes of crack growth, fracture
and failure in other quasi-brittle materials such as concrete and
polycrystalline ceramics. Most of these similarities arise due
to the intrinsic heterogeneous, polycrystalline and commonly
polyphase microstructure of these materials. However, there are
also a number of fundamental differences that affect rock
fracture, and which arise primarily due to their burial in the
environment of the Earth's crust. Important among these are: (1)
that under all but exceptional circumstances, rocks are subjected
to compressive triaxial stresses in the crust; (2) that in the
overwhelming majority of situations in the crustal environment,
pre-existing microcracks, pores and void spaces contain fluids
(especially water) which are also commonly under pressure; and
(3) the average rate of natural deformation is very slow.

Since crack growth is necessarily a dilatant process
(involving volume increase) it is pressure dependent, and
therefore the application of compressive stresses acts to
stabilize crack growth and hence to strengthen or toughen the
material. Conversely, the presence of pressurized pore fluids
acts to weaken rocks, both by reducing the confining effect of
any applied compressive normal stress via the principle of
"effective" stress (see Jaeger & Cook 1976), and also through
weakening fluid-rock chemical reactions that allow subcritical
crack growth processes such as "stress corrosion" to proceed.
Subcritical crack growth becomes a fundamentally important
deformation process in rocks because the inferred rate of natural
tectonic deformation in the crust (strain rates of the order of
10"1/s) is much lower than typical engineering rates of strain.
This leads to a time-, environment- and deformation rate-
dependence of the mechanical properties of rocks. For example,
the compressive fracture stress of unconfined rock can decrease
by a factor oF two or three as the strain rate is reduced from
those ordinarily used in laboratory tests (10. - 10'/s) to that
commonly associated with natural tectonic deformation. Most
rocks containing pore fluids also exhibit brittle creep behaviour
(time-dependent cracking at constant stress, or "static
fatigue"), especially if the applied stress is a significant
fraction of the short-term fracture stress (Kranz & Scholz 1977,
Kranz 1979, Costin 1987).

Furthermore, the underlying rationale behind the methodology
for determining basic fracture mechanics parameters is different
for rocks than for some other quasi-brittle materials (e.g.
concrete), and this is reflected in the different codes of
practice recently developed by ISRM and RILEM (ISRM 1988, RILEM
1985, Hillerborg 1989). In general, the size of rock masses
being considered in deep engineering problems and in crustal
geophysics can be considered to essentially infinite, and under
these circumstances an LEFM analysis is appropriate. On the
other hand, the realistic size of laboratory rock sampkes is
normally many orders of magnitude smaller. Hencje the ISRM
approach has been to attempt to obtain valid fracture toughness
values b y testing sub-size samples and then making a correction
for non-LEFM bahaviour. There is, therefore, the addi/tional

74



problem of the scaling effect to be considered when modelling and
analysing rock fracture problems using laboratory derived data.

By contrast, the RILEM approach has been to abandon LEFM
altogether and to determine the fracture energy from tension-
softening measurements. This stems, at least in part, from the
relatively small scale defference between test samples and real
enginering structures.

In summary then, the major part of this paper is concerned
with an integrated discussion of those aspects of the fracture
and failure of rocks that are different from other quasi-brittle
materials, i.e. compressive stress fields, the presence of pore
fluids, time-dependent propereties, and scaling relations.
However, it is well recognised (e.g. Kranz 1983, Meredith 1990)
that even under compressive loading rock deformation proceeds by
the growth, interaction and linkage of many tensile microcracks.
It is apposite therefore to consider briefly the fracture of
rocks under simple tensile loading before proceeding to the more
complex case of compressive loading.

2. Fracture under Tensile Loading

There have been a number of comprehensive reviews published
in recent years detailing different aspects of the propagation
of tensile cracks in rocks (e.g. Atkinson 1982, 1984, Swanson
1984, Atkinson & Meredith 1987a, 1987b, Meredith 1989) so that
only a brief summary is provided here to avoid needless
repetition.

2.1 CRITICAL FRACTURE

Meredith (1989) has shown that mode I fracture toughness
measurements for rocks exhibit similar treands as for many other
quasi-brittle materials. The fracture toughness of
polycrystalline rocks is generally found to be much higher than
that of any of the rock's constituent minerals (Atkinson &
Meredith 1987b, Meredith 1990), and Figure 1 also illustrates
that, for rocks of similar mineralogical composition, the
fracture toughness tends to increase with increasing grain size.
For rocks with a large variation in grain size, it is the maximum
grain size that is the controlling influence. Large grains or
phenocrysts appear to act as crack "stoppers" in a similar manner
to the large inclusions that are used to artificially toughen
some polycrystalline ceramics.

In addition, Figure 2 shows for Merrivale granite the type
of rising R-curve behaviour that is typical of many rocks (e.g.
Schmidt & Lutz 1979, Ingraffea 1987, Swanson 1987, Meredith 1989)
and polycrystalline ceramics ( e.g. Hubner & Jillek 1977, Cook
et al. 1985). The existence of R-curve behaviour is linked
directly with the development of an inelastic fracture process
zone that comnprises microcracking ahead of, and craqk interface
tractions (frictional interlocking due to the rbugh three-
dimensional nature of crack surfaces, and ligamentary bridging
between opposing crack walls) behind a macrocrack tip (Labuz et
al. 1985, Ingraffea 1987, Swanson 1987, Freiman & Swanson 1990).
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Crack extension resistance increases as crack length increases
until the process zone is fully developed and there is at least
a portion of the crack that is traction-free. Only at or beyond
this critical crack length is a steady state reached, and only
then can a fracture toughness value that is truly representative
of the bulk material be determined.

2.2 SUBCRITICAL CRACK GROWTH

In systems where rocks are subjected to long-term loading,
the classical LEFM approach does not provide an adequate
description of crack growth. This is especially so at elevated
temperatures and in the presence of reactive environmental
species. A considerable body of evidence supports the idea that
cracks can propagate in a stable, quasi-static manner at stress
intensities that are substantially below the fracture toughness,
albeit at velocities that are orders of magnitude lower than the
terminal velocity associated with critical fracture. This
phenomenon of subcritical crack growth has been observed
experimentally in many quasi-brittle materials, including glass
(Wiederhorn 1978), ceramics (Wiederhorn 1974), and mine$1als and
rocks (Atkinson 1934, Atkinson & Meredith 1987a, 1987b).

The overwhelming body of experimental and observational
evidence suggests that extension of pre-existing cracks and flaws
by the mechanism of "stress corrosion" is likely to dominate
subcritical crack growth in rocks at low homologous temperatures.
Stress corrosion proceeds by the preferential weakening of
strained bonds at crack tips through reactions with chemical
species in the environment. Although a whole range of
surfactants can contribute to stress corrosion (e.g. Dunning et
al. 1984), the most active reagent for the process appears to be
water.

The subcritical crack growth behaviour of many materials
approximates to the classical trimodal pattern exhibited by glass
in aqueous environments. This pattern of behaviour is
illustrated schematically in Figure 3, where the logarithm of
stress intensity (K) is plotted against the logarithm of crack
velocity. In region 1, the crack extension velocity is
controlled by the rate of stress corrosion reactions at crack
tips. In region 2, crack growth is controlled by the rate of
transport of reactive species to crack tips (Lawn & Wilshaw
1975). In region 3 the curve becomes asymptotic to the critical
value (denoted by 'c'); crack growth is primarily due to
thermally activated bond rupture and is relatively insensitive
to the chemical environment (Freiman 1984). A lower limiting
threshold is thought to exist, below which no crack growth will
occur (denoted by '0'). The existence of such a subcritical
crack growth limit has been demonstrated for various glass/water
systems (e.g. Wiederhorn & Johnson 1973, Simmons & Freiman 1980),
but has not yet been confirmed for pelycrystalline ceramics or
rocks. Note that because stress corrosion is a chemically-
enhanced and thermally activated process, the subcritical crack
growth curve should be shifted to a higher velocity for the same
value of K if either the partial pressure of the active
environmental reagent or the temperature is increased.
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Figure 4 illustrates experimentally derived subcritical
crack growth data for Westerly granite under a range of
environmental conditions. All of the data of Figure 4 relate to
region 1 type behaviour and may be described by a power law
(Charles 1958) of the form:

V - V, (K/K)' (1)

where n is known as the stress corrosion index (for the data of
Figure 4, values of n lie in the range 33 - 40).

Atkinson & Meredith (1987b) provide a compilation of
subcritical crack growth data for a wide range of rocks and
minerals, and for polycrystalline rocks values of n in equation
(1) generally lie in the range 20 - 60. Comparison of
subcritical crack growth behaviour for different rock types is
problematical, but an .ttempt is made to do this in Figure 5
(after Atkinson 1984) by normalizing stress intensity factors by
the fracture toughness of each rock type. Figure 5 therefore
illustrates in a broad way the relative susceptibility of
different rock types (and quartz) to subcritical crack growth,
bearing in mind that it is only constructed from existing
experimental data. The overall trend is that the more complex
the microstructure, the lower is a material's susceptibility to
subcritical crack growth. Similar conclusions have been reported
by Swanson (1984). These observations imply that the more
heterogeneous rocks behave in a more brittle manner, at least
during slow deformation. This is not what one might intuitively
expect, and appears to contradict the conclusions of Cox & Scholz
(1988) and Cox & P.Jerson (1990) that heterogeneous rocks with
large initial flaw distributions tend to behave in a less brittle
manner than more homogeneous rocks.

3. Fracture under Compressive Stresses

Fracture of quasi-brittle materials subjected to compressive
stresses is generally much more complex than for the tensile
case, since compressive failure generally involves the
nucleation, propagation and interaction of a distributed array
of microcracks. Direct observation of such stress-induced
microcracks in rocks (e.g. Peng & Johnson 1972, Tapponier & Brace
1976, Kranz 1979, 1980, 1983, Wong & Biegel 1985) suggests
strongly that they nucleate from pre-existing flaws (pores,
inclusions, microcracks, etc.), and propagate in a direction
parallel to the maximum pr4ncipal compressive stress.

The stabilizing influence of the minimum principal
compressive stress (confining stress) is illustrated in Figure
6. Where there is io confining stress (uniaxial compression)
failure may be unstable, and is dominated by the propagation of
a small number of axial cracks. By contrast, the application of
even a modest compressive confining stress causes individual
cracks to extend stably. A microcrack will extend to relieve the
local stress concentration caused by an increase in the
compressive stress difference, and will then arrest. In terms
of fracture mechanics, neglecting for the moment any subcritical
crack growth, microcracks extend once the critical tensile stress
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intensity (Kc) is exceeded locally. However, since K is a
decreasina function of crack length under these conditions (ada
et al. 1973, Costin 1987), individual cracks only extend until
equilibrium is reached at K - .,. As the compressive stress
difference is increased, an increasing population of microcracks
extend until their density and average size is such that they
interact to produce macroscopic failure.

At moderate confining stresses, the failure mode is
controlled by the interaction of numerous microcracks in a
relatively narrow fracture zone to form a macroscopic shear
failure (i.e. a fault); and at much higher confining stresses by
distributed, near-homogeneous microcracking to cause pseudo-
ductile deformation by cataclastic flow. Hence the compressive
strength of rocks is very pressure dependent.

Furthermore, Main, Peacock & Meredith (1990) have noted that
both seismic data from crustal earthquakes and acoustic emission
data from laboratory-scale rock fracture experiments (reported
in a later section) are consistent with a feedback model of
compressive failure. Where a population of microcracks exists,
the overall situation appears to be initially one of negative
feedback. Once a crack has grown to relieve the stress locally
in a high stress zone, it becomes a relatively low stress zone.
It is then more likely that further stress relief will be
accommodated by growth of a different crack than by further
extension of the same crack. Eventually, under conditions of
increasing stress, a proportion of the original population of
cracks will have grown stably until their lengths are comparable
to their spacing, whereupon the locally perturbed stress fields
due to the presence of the cracks interact in a cooperative
manner. The situation can then flip from one of negative
feedback to one of positive feedback, leading to instability and
failure. In terms of stress/strain relations this corresponds
to a change from strain hardening to strain softening behaviour
during dilatancy.

So far we have neglected any influence of t~me-dependent
processes such as stress corrosion, but like tensile fracture,
failure under compressive loading has long been recognised as a
process that is dependent upon both environment and deformation
rate. Therefore if we wish to use our understanding of the
behaviour of individual tensile cracks to address the problem of
fracture in compression it is necessary to consider the combined
effects of arrays of multiple cracks in order to account for bulk
material behaviour. In an attempt to address this problem,
modified Griffith theories were developed to predict the shapes
of failure envelopes in normal stress - shear stress space (Mohr
diagrams) from consideration of the action of microcracks
(modelled as elliptical flaws) At different orientations (e.g.
McLintock & Walsh 1962, Murrell & Digby 1970). The essential
features of this approach are illustrated in Figure 7 (after
Murrell 1990). In particular, the figure shows conditions for
compaction (due to crack closure), dilatancy (following crack
initiation), macroscopic shear fracture, and the transitions from
fracture to cataclastic flow or plastic flow (at elevated
temperatures). Each of these features is associated with a
particular state of crack damage.
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However, a full treatment of brittle failure requires
consideration of all phases of crack development including crack
nucleation, crack extension and crack interaction. In recent
years a number of authors have contributed to the development of
a new body of theory known as "damage mechanics" that takes
account of all of these phases of cracking in ar attempt to
explain the various aspects of non-linear, time-dependent
mechanical behaviour by utilising' the concept of a single
variable or set of variables to describe the changing
microstructural state of a material as it is deformed (e.g.
Costin 1983, 1985, Horii & Nemat-Nasser 1986, Ashby & Hallam
1986, Sammis & Ashby 1986, Kemeny & Cook 1987). A brief review
and comparison of the predictions of these various damage models
has been provided by Gueguen et al. (1990f; and so is not
repeated here. Costin (1987) has pointed out that there are
three basic elements required for any damage theory: (1) a
definition of the state of damage; (2) an equation to describe
damage evolution; and (3) a constitutive law that predicts the
relation of damage to stress and strain.

It is trivial to note that any predictions derived from the
models will depend crucially upon the assumed initial flaw
distribution. In his comprehensive review of microcracks in
rocks, Kranz (1983) points out that while a great deal of theory
exists on the role of microcrack populations in rock fracture
processes,there is a paucity of supporting observational data.
Common assumptions include collinearity or randomness in
orientation and location of the initial microcrack population,
and initial length-frequency distributions that can be uniform,
Gaussian, exponential or power law in form. However, the
assumption of randomness in the cracking process and stochastic
independence between cracks becomes increasingly untenable as
stress levels increase and cracks interact and coalesce as
failure is approached. Furthermore, since cracks are quasi-
planar features, the growth of microcracks that are aligned with
respect to principal stress directions will result in even an
initially isotropic material being rapidly transformed into a
mechanically anisotropic material.

4. Indirect Monitoring of Damage Development by Integrated Rock
Physical Property Measurements

Where the experimental work described in this section
differs from, but aims to build upon, earlier theoretical damage
mechanics studies is by incorporating the diagnostic results of
contemporaneous measurements of rock physical property changes
during deformation experiments into the modelling process, in
order to provide a physically more realistic description of crack
damage development. The underlying rationale of this approach
is illustrated schematically in Figure 8. In essence: (1)
changes in the velocity of elastic waves pulsed through an
experimental sample occur in response to changes in the
cumulative density of cracks and pores, and hence indirectly
describes the changing state of damage; (2) acoustic emission
statistics relate to the contemporary rate of crack extensions,
and hence can provide information about the rate of damaye79



evolution; and (3) measurement of changes in transport properties
such as fluid permeability or electrolytic conductivity provides
information about the interaction and linkage of dilatant
microcracks leading to macroscopic fracture and failure.
Currently, we are making simultaneaous measurements of elastic
wave velocity changes and variations in acoustic emission
parameters during our triaxial rock deformation experiments. The
contemporaneous measurement of-changes in connected pore volume
and fluid permeability is in an active state of development.

4.1 ELASTIC WAVE VELOCITY MEASUREMENTS

Results of measurements of both P- and S-wave velocities
made during triaxial deformation of dry sandstone in our
laboratory have previously been reported in Sammonds et al.
(1989) for all of the failure modes illustrated in Figure 6.
More recent results for the cases of failure by localized shear
faulting and by distributed cataclastic flow are shown in Figure
9. For both cases, the velocity of both P and S waves increases
during the initial quasi-linear phase of loading, with maximum
velocity occurring at about half the peak stress difference. This
is interpreted as being due to the closure of cracks in response
to the increasing applied stress. The most favourable oriented
(i.e. those oriented normal or sub-normal to the axial stress)
and most open cracks close first, and crack closure then becomes
progressively more difficult. Above about half the peak stress,
new dilatant cracks begin to propagate, and hence both wave
velocities start to decrease. However, note that during the
initial phase of deformation, the relative increase in Vis
substantially higher than the increase inV , but that V,
decreases more rapidly than V, in response to'dilatant crack
growth. Since axial P waves are more sensitive to cracks normal
to the axial stress, and a waves more sensitive to cracks
parallel to the axial stress, this observation supports the
concept that dilatancy occurs by the growth of tensile cracks
oriented parallel to the maximum compressive stress. It also
shows that simultaneous measurement of changes in both velocities
provides a guide to the progressive development of crack
anisotropy as deformation proceeds.

A number of theories have been propolsed to relate changes
in elastic wave velocities to changes in effective elastic
moduli, and thereby to changes in microcrack concentration or
density. One of the first of these was by Walsh (1965) who
calculated the excess strain energy due to the presence of an
isolated penny-shaped crack in an infinite medium under stress.
However, Walsh's formulation did nottake account of stress field
interactions between adjacent cracks, and is therefore only
applicable to low densities of relatively short cracks.
O'Connell & Budiansky (1974) on the other hand specifically
included crack interactions in their model which assumes that a
crack is imbedded in an homogeneous medium whose effective
elastic moduli are those of the cracked material. Not
surprisingly, the latter theory predicts a much more rapid
decrease in moduli with increase in crack density and average
crack length than does the formulation that ignores interactions.

O'Connell & Btdiansky's model predicts that not only both80



V, and V, but also the ratio V9/V, would decrease with increasing
crack density. However, the experimental results of Figure 9,
and those reported by Gupta (1973) and Sammonds et al. (1989) do
not support this latter prediction. For example, Sammonds et al.
note that for their experimental results, the V/V, ratio
initially increases with increase in stress difference. This
initial increase is followed by a period where the ratio is
essentially constant, before again increasing close to peak
stress and beyond. Gupta (1973) reports a similar result.

Furthermore, in Figure 10 we show the results of
calculations of the change in crack density from the initial
unstressed state determined according to O'Connell & Budiansky's
model. The crack density parameter (d) is given by

d - N<a i) (2)

where N is the number of cracks per unit volume of the solid and
<a> is the mean major axis of the ellipsiodal cracks. d is
further defined as a function of the Poisson ratio (v) according
to

d = (45(v, - v) (2 - v)]/(16(1 - vI)(10v, - 3v, - v)] (3)

where v is the Poisson ratio for the initial state, and v is the
effective Poisson ratio of the cracked solid. From elasticity
theory,

v = [(V, /V,) - 2]/[2(V,/V,)' - 1] (4)

and hence variations in d may be determined from variations in
V, and V,. Figure 10 shows the variations in the crack density
parameter (d) calculated from the data of Figure 9. Rather than
an increase in crack density, the model erroneously predicts a
decrease in crack density as deformation and dilatancy proceeds.
This result stems directly from the observation that the ratio
V/V, does not decrease during deformation as predicted by the
model.

The explanatIon for these discrepancies between model
predictions and experimental observations is that the model does
not take account of the development of any crack anisotropy. As
rocks deform, their compliance parallel to the axis of
compression decreases due to crack closure, and that normal to
the axis of compression increases due to the growth of dilatant
tensile axial cracks.

More recently, Hudson (1981) and Crampin (1984) have taken
crack anisotropy into account by calculating theoretically the
variations in P and S wave velocities through solids containing
aligned cracks. However, their formulations are only valid for
crack concentrations that are low enough for no interaction to
occur, and where the wavelengths of the pulsed waves are large
compared with the length of the cracks.

To date, therefore, no systematic theoretical treatment
exists that can take full account of both crack interactions and
the development of anisotropy.
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4.2 ACOUSTIC EMISSION MEASUREMENTS AND GEOMETRICAL
SCALING RELATIONS

It is well documented that, for subcritical crack growth of
tensile cracks, the rate of acoustic emission (AE) activity is
directly related to the rate of crack propagation (e.g. Atkison
& Rawlings 1981, Meredith & Atkinson 1983, Meredith 1990), and
that the magnitude or amplitude of an individual AE event is
related to tha source dimension and the increment of crack
extension that generated the emission. Meredith & Atkinson
(1983) have previously reported data describing the distribution
of event amplitudes as a function of stress intensity factor,
from tensile tests on a range of crystalline rock types. The
parameter that characterizes the amplitude distribution is the
"seismic b-value" (c. f. the Gutenberg-Richter frequency-magnitude
relation for earthquakes), where b is an empirical constant in
the relation

log N - a - bm (5)

where N is the number of times an event of magnitude (log scale)
or peak amplitude (in dB) m occurs, and a is a constant. The
data are shown in Figure 11. For these tensile experiments, the
b-values are seen to lie in the range 1 - 3, and are negatively
correlated and linearly related to K/K, the normalized stress
intensity. Physically, ahigh b-value cliaracterizes crack growth
dominated by a large number of relatively small events, whereas
a low b-value indicates a larger number of relatively large
events. Note also that the b-value is higher in a "wet" as
opposed to a "dry" environment, especially at low values of K
(low crack velocity). Changes in b may therefore be due either
to changes in stress intensity or to changes in the humidity of
the crack tip environment.

This may be related to the observation of a trend from
dominantly transgranular cracking at high crack velocity and low
humidity, to dominantly intergranular cracking at low velocity
and high humidity, since jrain boundaries provide the main
conduits for the access of water and will therefore stress
corrode preferentially. At values of K close to the fracture
toughness crack growth is very rapid, and hence the environment
has little effect on either crack growth rate or the b-value.
For either environment, the critical b-value for dynamic failure
(at K - KIC) is unity.

The power law distribution of AE event amplitudes described
by equation (5) implies that a power law distribution of flaw
sizes of the form

N(a) - C a'$ (6)

is necessary to generate this range of eVent sizes, where C is
a constant, a is the crack length, and D is the power law
exponent. Furthermore, if the distribution is geometrically
scale-invariant between the minimum and maximum lengths, then D
is strictly defined as one aspect of the fractal dimension of the
system (Mandelbrot 1982). Several authors (e.g. Caputo 1976, Aki
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1981) have shown that

D = 3b/c (7)

where c is a constant that depends on the relative time constants
of the event and the recording system. Main et al. (1989) have
shown that, for the data of Figure 11, c - 3, so that b - D;
whereas for the triaxial compression experiments to be reported
below, c - 3/2 and therefore b - D/2. The crack length fractal
dimension (D) inferred from the above argument is also indicated
on Figure 11.

It is well known that many geological structures and
fabjrics are often scale-invariant within well-defined
characteristic limits, otherwise it would not be necessary to
include scale bars or the ubiquitous geological hammer on
photographs of rock samples and rock outcrops. Figure 12 (after
Shaw & Gartner 1986) shows convincing evidence for the scale-
invariance of shear fault systems with one dominant throughgoing
fault, over a range of scales from fractions of a mm to hundreds
of km. Without the scale bars and annotation it would be very
difficult to distinguish laboratory shear-box experiments from
plate-rupturing faults. Figure 13 superposes the size
distribution of the four fault systems of Figure 12, with each.
normalized to the length of the dominant throughgoing fault. Two
aspects emerge immediately: (1) all the fault systems have the
same relative size distribution of subsidiary faults; and (2) the
size distribution is a power law with a negative exponent D = 1,
corresponding to critical rupture.

The most appropriate mathematical description of the size
distributions of Figure 12 is the Cantor set (Mandelbrot 1982,
Turcotte 1989, Main et al. 1990) which describes a dominant
straight line drawn on a two-dimensional plane, with more and
more identical replicas in a cascade of smaller scales, and with
a power law frequency distribution of lengths. Extension to
three dimensions would require a dominant fault plane with a
cascade of smaller area fault planes (Main et al. 1990).

AE results from laboratory-scale triaxial compression
experiments on samples of Darley Dale sandstone are shown in
Figures 14 and 15. All data are plotted against time, but this
is equivalent to strain for these constant strain rate tests.
Details of the experimental arrangement and methodology are given
in Meredith et al. (1990).

Figure 14 shows data from a test on a water-saturated sample
deformed under a confining stress of 50 MPa. The stress/time
curve is markedly non-linear, with peak stress followed by a
significant decrease in in stress precursory to dynamic failure
on a well-defined fault plane, and finally, stable sliding on the
fault. Macroscopic dynamic failure occurs when the negative
slope of the stress/time curve is a maximum (i.e. when the rate
of stress drop is a maximum).

The AE rate increases rapidly with the onset of dilatancy,
which in this case occurs at little more than 50% of the peak
stress. We can usefully separate dilatancy into two phases; the
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first dominated by the growth of new microcracks in the period
up to peak stress, and the second dominated by the interaction
and coalescence of these microcracks to form a throughgoing fault
in the period of post-peak strain softening. Around peak stress,
the AE rate at first flattens out and then falls dramatically to
a short period of apparaent quiescence. This quiescence
associated with dynamic failure is thought to be caused by
saturation of the monitoring system due to a cascade of events
which become indistinguishable from each other at critical crack
coalescence. Similar apparent quiescence has been reported to
occur close to dynamic failure by a number of other workers (Gowd
1980, Kikuchi et al. 1981, Sondergeld et al. 1984), but only when
a strain softening phase preceded failure. Finally, following
instability the AN rate recovers before decaying in a manner
analogous to an earthquake aftershock sequence (i.e. according
to Omori's law).

b-value data for this experiment exhibit the following
importan* features: (1) during the early quasi-elastic phase of
loading, where there is a low level of AE activity, the b-value
remains essentially constant, with a high value close to 1.5 (and
by inference D = 3). At higher levels of stress, the major trend
is of a decreasing b-value, correlated with increasing AE rate
and the growth of new microcracks, and which flattens out at
around peak stress (b - 1, D = 2). This is followed by an
inflection point leading to a much shorter time-scale b-value
anomaly leading to dynamic failure close to the expected value
of b, = 0. 5 (D - 1). Post-failure the b-value recovers as
expected. Note that the error in measurement of b-values is
proportional to 1I/N"1 , where N is the total number of AE events
in each time period for which a b-value is determined. So the
variability in b-values is much greater during the relatively
quiet low-stress phase of loading than during the dilatant phase
where the AE rate is much increased.

Finally, Figure 15 shows the same suite of data from a test
on a water-saturated sample deformed under a much higher
confining stress of 200 MPa. In this case there is no stress
drop, and deformation takes place quasi-statically by cataclastic
flow rather than by dynamic rupture on a localized fault. Under
these conditions, the AE rate again increases with the onset of
microcracking, but remains at a consistently high level
throughout the phase of cataclastic flow, with no indication of
any period of quiescence or decay. Here, the b-value is simply
negatively correlated with the level of stress, and falls from
its background level of 1.5 to reach a constant value of unity
(with an inferred instantaneous value of D - 2) associated with
distributed microcracking during the phase of cataclastic flow.
The value never falls to anywhere near the critical value of 0.5,
since there is no critical stress concentration.

5. Concluding Remarks

It is clear that the geometrical distribution of flaws on
all scales plays a crucial role in controlling the mechanical and
physical behaviour of heterogeneous, polycrystalline, quasi-
brittle materials such as rocks. It is therefore vital that
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theoretical models describing the evolution of crack damageutilise physically realistic flaw distributions if predictionsof the eeformation response and failure of these materials areto be useful.

A whole plethora of evidence now supports the concept of apower law distribution of flaw sizes in rocks, with an exponentthat varies as deformation proceeds, but that reaches a criticalvalue for catastrophic rupture. Encouragingly, this also impliesthat, within certain limits, the procet.s of fracturing is scale-invariant, which suggests that data derived from laboratory-scalesamples may be able to be applied usefully to much larger scale
rupture.

For the future, more detailed damage models will be requiredqp= accommodate time-dependent cracking processes and morerealistic descriptions of both initial flaw distributions and thedeveloping state of damage. This is likely to be an iterativeprocess requiring input from the techniques that indirectlymonitor damage development during progressive deformation into
enhanced theoretical models.
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FIGURE CAPTIONS

FIGURE 1. Mode I fracture toughness as a function of grain
size for granitic rocks. (After Meredith 1989).

FIGURE 2. Illustration of R-curve behaviour in samples of
Merrivale granite. Fracture resistance 1() is plotted against
maximum crack length at critical failure. (Xfter Meredith 1989).

Figure 3. Schematic diagram showing the dependence of crack
velocity on stress intensity (K) between the subcritical crack
growth limit (0) and critical rupture (c). The influence of
temperature and partial pressure of water is also indicated. The
different behaviour in regions 1. 2 and 3 is discuused in the
text.

FIGURE 4. Stress intensity factor - crack velocity diagram
for Westerly granite at temperatures from 20' to 3001C under water
vapour pressures of 2.5 and 15 kPa. Solid lines are least
squares fits to the data points. (After Meredith & Atkinson
1985).

FIGURE 5. Synoptic diaqram illustrating variation in
subcritical crack growth behaviour with rock type. In general,
polyphase rocks exhibit higher values of "n" than monominerallic
rocks, with single mineral phases having the lowest values.
Arrows indicate the range of data. (After Atkinson 1984).

FIGURE 6. Failure modes of quasi-brittle materials in
compression, and their associated strens/strain curves: (a) axial
splitting under uniaxial compression; (b) crack linkage to form
a macroscopic shear failure or fault under moderate confining
stress; and (c) near-homogeneous deformation by distributed
cracking during cataclastic flow at high confing stress. (After
Ashby & Hallam 1986).

FIGURE 7. Mohr diagram (tensile stresses taken as positive)
showing envelopes for crack propagation, fracture and sliding
friction, and for plastic anad cataclastic flow. Q is the
intermediate principal stress. Cataclasis with dilatancy
associated with new crack propagation occurs under stress
conditions lying between the fracture abd crack propagation
envelopes and in the cataclastic flow region of the diagram.
(After Murrell 1990).

FIGURE 8. Schematic diagram illustrating the relationship
between various rock physical properties and crack damage
development for brittle rock.

FIGURE 9. (a) Stress difference, (b) percentage change in
P-wave velocity, and (c) percentage change in S-wave velocity for
triaxial deformation of dry samples of Darley Dale sandstone
under confining stresses of 50 and 150 MPa.

FIGURE 10. Calculated variation in crack density from the
initial unstressed state for triaxial deformation of Darley Dale
sandstone. Crack densities were determined from the data of
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Figure 9 according to the model of O'Connell & Budiansky (1974).

FIGURE 11. Synoptic diagram of the variation in seismic b-
value and the inferred fractal dimension (D) with normalized
stress intensity (K/Kd) and crack tip humidity for tensile crack
propagation in a variety of crystalline rocks. Solid lines are
least squares fits to the data points and converge approximately
at the point (K/K, - 1, b - 1, D - 1).

FIGURE 12. Geometry of shear faulting over a range of length
scales (after Shaw & Gartner 1986). On the scales shown, each
example is dominated by one major throughgoing fault.

FIGURE 13. Normalized discrete frequency-length distribution
of the faults shown in Figure 12. All four data sets are
consistent with a power law of negative slope D - 1 (solid line).

FIGURE 14. Contemporaneous measurements of (a) stress
difference, (b) AE event rate, and (c) b-value and inferred
fractal demension (D) as functions of time for a water saturated
sample of Darley Dale sandstone deformed at a nominally constant
strain rate of 10"/s under a confining stress (PC) of 50 MPa.
This sample failed by localized shear faulting after a dynamic
stress drop. Peak stress and dynamic failure are marked by
dashed vertical lines.

FIGURE 15. As for Figure 14, but for a sample of Darley Dale
sandstone deformed under a confining stress of 200 MPa. In this
case deformation occurred by distributed cataclastic flow, and
there was no dynamic failure or stress drop.
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(a) California faults showing evidence of activity in latest 15m.y. (Howard 8 others,

- N. 1978)

(b) Dasht-e Bayez earthquake fault , Iran (Tchalenko, 1970)

100m

(c) Deai deomto nRl shearbo experiment Tchalenko, 1970
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TEST METHODS FOR DETERMINING MODE I

FRACTURE TOUGHNESS OF CONCRETE

B.L. KARIHALOO and P. NALLATHAMBI
University of Sydney, Sydney, Australia.

SUMMARY

This lecture will review the various test methods considered by sub-committees
A and B of RILEM TC 89-FMT for the determination of mode I fracture toughness
of plain concrete. These methods have been categorized depending on the geom-
etry of the test specimen. Thus, sub-committee A considered only the notched
beam specimen, while sub-committee B considered three different compact speci-
men geometries. Moreover, as linear elastic fracture mechanics is fully applicable
only to very large structures, three separate models have been proposed in relation
to the application of LEFM to laboratory size notched beam specimens and these
will be discussed . A further method considered by an earlier RILEM committee
(TC-50 FMC) will also be included in the review not only because reference will
often be made to this method but also to complete the presentation of all existing
test methods for mode I.

INTRODUCTION

One of the earliest methods for studying the fracture behaviour of concrete was pi-
oneered by Hillerborg et al. (1976). In this method which is based on the so-called
cohesive crack model, it is assumed that fracture under monotonically increasing
mode I loading occurs when the maximum (tensile) principal stress reaches the
(uniaxial) tensile strength of the material ft. It is further assumed that fracture
is localized in the so-called process zone such that there is no energy dissipation
in the bulk of the structure. The process zone (Fig. 1) is modelled by a displace-
ment discontinuity with the proviso that the faces of the discontinuity are capable
of transmitting certain cohesive stresses, less than ft, such that a = F(w) with
F(O) = ft, and F(w) 0, where F(w) describes the tensile softening behaviour.
In practice, F(w) was approximated by a linear or bi-linear relation and was as-
sumed to vanish when the crack opening displacement w reached a certain critical
value w,. The fracture response of concrete in this method is characterized by frac-
ture energy GF defined as the energy required to open a unit crack fully, or in other
words, as the area under the strain-softening curve between w = 0 and w = w,.
Moreover, from the material parameters E, ft, GF an independent parameter with
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Figure 1: Pre-peak (linear) response and post-peak tension softening

the units of length 1h = GFE/fi is defined and is called the characteristic length.
An extensive round-robin testing programme organised by RILEM FMC-50

(1985) and using the same concrete mix in all participating laboratories confirmed
earlier doubts that GF varied significantly with the size of test specimens for one
and the same mix. In the light of this confirmation it is somewhat surprising that
this method is still widely used. It is now generally accepted that the size (scale)
effect is due to curing conditions which result in cracking, to the development of
microcracks at the aggregate/paste interfaces or the paste itself, to crack bridging
between the aggregate particles, etc. These processes consume energy and lead to
the observed non-linear load response, not only in the post-peak regime but already
in the pre-peak behaviour. In the above method, the material response is assumed
to be linear right up to the peak load (Fig. 1).

In order to better understand the reasons behind the observed size (scale) ef-
fect and, what is more important, to propose a reasonably size-independent test
method(s) for determining the intrinsic mode I fracture toughness of concrete the
RILEM TC-89 (FMT) was set up in Paris in 1986, under the chairmanship of
Professor S.P. Shah. Of the several sub-committees formed at this Paris meeting,
sub-committee A (Chair: B.L. Karihaloo) was charged with analysing available
test data from three-point bend notched specimens (including the data from above-
mentioned round-robin testing programme) according to the two-parameter model
(Shah & Jenq 1985) and the size-erect law (Balant & Pfeiffer 1986). These two
proposals were before the committee at its inception. However, of the extensive
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body of raw test data available for analysis, only a very small fraction was suitable
for analysis according to these two proposals. The reasons for this were twofold.
First, very few sets of data were accompanied by load-CMOD diagrams and un-
loading compliance figures necessary for analysis according to the two-parameter
model. Secondly, even fewer sets of data met the rather strict size requirements
of the size-effect law. The available data were therefore also analysed accord-
ing to a third method, namely that based on effective crack model (Karihaloo &
Nallathambi 1986a). This lecture will review all three methods in relation to three-
point bend notched specimens on the basis of one and the same set of test data, as
well as on the basis of their maximum load prediction following the methodology
proposed by Planas & Elices (1987). This latter method of comparison also serves
as a link between the above three methods and the earlier method due to Hillerborg
et aL (1976).

Sub-committee B (Chair: P. Rossi) on the other hand, was asked to consider
other, more compact specimen geometries for the determination of fracture proper-
ties of plain concrete. This lecture will review the three compact specimen geome-
tries analysed by Sub-committee B, namely the tapered double cantilever beam
(TDCB), the cylindrical wedge splitting specimen and the cubical wedge splitting
specimen.

Both sub-committees have now finalised their reports in anticipation of their
publication in October 1990. These reports have uot only eased the task of prepar-
ing this review lecture, but more importantly have provided a valuable reference
source. To keep this lecture within manageable length, frequent reference will be

made to these reports.

THE TWO-PARAMETER MODEL (TPM)

The two-parameter model or the effective Griffith crack model (Shah & Jenq 1985)
allows for both pre-critical and post-critical crack growth. The pre-critical stable
crack growth is accompanied by an increasing stress intensity factor K, (R-curve
behaviour). It is assumed that the load-CMOD (Fig. 2) is more or less linear up
to about half the maximum load and the corresponding crack tip opening displace-
ment (CTOD) is zero. Significant inelastic displacement and slow crack growth
occur when the load increases from about 0.5P.az on the ascending branch of the
load-CMOD plot to 0.95P,,. on the descending (tension-softening) branch. The
latter load level is associated with the instant of growth of the original notch, i.e.
with critical K, which is designated K1c and with the critical value of CTOD of
the original notch tip which is designated CTODC.

The load-CMOD diagram is used to calculate both E and Kjc by the traditional
compliance approach. The initial compliance C, of the load-CMOD plot (Fig. 2)
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Figure 2: A typical load-CMOD plot (Jenq & Shah 1985)

is measured and used for determining the elastic modulus E of the mix.

E = 6S(ao + Ho) / () /(CBW2 ), (1)

where H0 is the thickness of the knife-edge used for holding the clip gauge and the
function VI(ao/W) established from finite element calculations is

V(2) = 0.76 - 2.28 ()+ 3.87 (!E)2-.0 (!E) C3+ 066)2* (2)

For a notched three-point bend specimen, B, W, S are respectively the width,
depth and loaded span of the beam. It should be mentioned that the principle of
two-parameter model should be applicable not only to notched beam specimens
but to other geometries as well. However, recent calculations would seem to cast
doubt on its applicability to geometries other than the notched beam. We shall
have more to say on this subject when we discuss compact specimen geometries.

The unloading compliance C,. (Fig. 2) corresponding to 0.95Po. on the de-
scending branch of load-CMOD plot is used to obtain an augmented traction-free
notch depth . (equal to ao plus the effective slow crack growth size) by solving the
following equation

E = 6S(a + Ho) V (A) /(C.BW 2). (3)

110



CmO0o - elastic UO0 at peak load if there is
no stable (prepeak) crack growth

CHOD a Inelastic COD at peak load

C a; a elastic displacement at peak load dues to nonlinear effect
CMOOqeo' CMO1D* CMOD CHOOT . tal crack muth opening dlsplacment

! .

0

.jI

U 4

CMODM CMOD e  CMOD T

Figure 3: Decomposition of CMOD due to non-linear effect

a is determined from (3) by a trial and error procedure or from nomograms provided
by John, Shah & Jenq (1987). Having calculated a, the critical stress intensity
factor Klc is determined from the LEFM formula (Srawley 1976) after replacing in
i t a 0  b y gS

K; B= P mazSF(G) (4)

where a = a/W and

1.99 - a(l - a)(2.15 - 3.93a + 2.7 2)

F(a) (1 + 2a)(1 - a) 3/2  (5)

The effective notch depth a may also be used to calculate the critical crack tip
(original notch) opening displacement CTOD

CTODc - W 2 BE - )2 + (-1.149a + 1.081)(# - 192))1/2, (6)

where a =,/W and # = ao/a,.
Practical difficulties are faced in unloading the specimen at precisely 0.95P,,..

on the descending branch of load-CMOD plot. Even in laboratories which are
equipped to perform a stable bend-test, unloading the specimen at 0.95Pm, , is
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Table 1. Summary of Results According to TPM

Si g n f E Range Range KIc CTODc(mm)
No ao/W g/W Mean(sd) Mean(sd)
1 19 6 55.8 36.8 0.29-0.67 0.55-0.81 0.931(0.263) 0.0148(0.0076)
2 19 4 53.1 38.4 0.29-0.70 0.41 1.054( -) 0.0153( - )
3 19 3 54.4 39.3 0.30-0.67 0.42-0.73 1.128(0.269) 0.0200(0.0085)
4 19 25 53.1 38.4 0.25-0.61 0.44-0.83 1.146(0.014) 0.0316(0.0067)
5 19 22 54.4 39.3 0.16-0.57 0.54-0.69 1.220(0.102) 0.0312(0.0087)
6 3 12 - 36.8 0.13-0.51 0.15-0.56 0.894(0.068) 0.0042(0.0013)
7 6 2 60.7 33.5 0.20-0.21 0.25-0.28 1.141(0.095) 0.0145(0.0057)
8 13 3 45.5 31.0 0.20-0.21 0.25-0.35 1.475(0.191) 0.0220(0.0086)
9 13 3 43.4 31.0 0.20-0.21 0.24-0.28 1.530(0.022) 0.0169(0.0024)

10 19 8 25.2 27.2 0.29-0.33 0.35-0.55 0.976(0.103) 0.0170(0.0068)
11 32 17 31.0 32.3 0.50 - 0.121(-)
12 2 11 35.0 25.7 0.50 - 0.090(- )

13 8 2 110. 56.5 0.33 - 2.130( -) 0.0338(0.0039)

Notes:

1. g = Max. aggregate size (mm); .n = No. of specimens tested.

2. f: in MPa, E in GPa, K), in MPaVm-i

3. The entries have been grouped according to mix variables only because they do not
vary with the size of test specimens. Thus entries differ only by the maximum size of
coarse aggregate (g) used in the mix and other mix parameters, e.g. water/cement
ratio, texture of coarse aggregate. That KI' (but not CTOD) is relatively insensi-
tive to the specimen size is best judged from Fig. 4 which shows the relative KII, of
a mix calculated by dividing the Kc of a particular specimen group from this mix
with the KI) for the specimen of least depth from this group and mix. The various
plots on Fig. 4 refer to different mixes.

not always successful, so that inaccuracies in the determination of C,, are unavoid-
able. For those laboratories which cannot perform a stable three-point bend test
Shah & Jenq recommend that C, be approximated by its value corresponding to
CMOD* = 0 (Fig. 3). They suggest that Kj and CTODC determined under this
approximation are about 10% to 25% higher than the values calculated using the
C,, corresponding to 0.95P,,., on the descending branch (Fig. 2). A summary of
results according to TPM based on test data from several laboratories around the
world (Karihaloo & Nallathambi 1990a) is given in Table 1.

The two fracture parameters K), and CTOD, together with an appropriate
approximation of the tension-softening behaviour may be used to calculate ft and
any other parameters required for the full description and finite element modelling
of the fracture process. We shall demonstrate this calculation later in this lecture.
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Figure 4: Variation of relative K18 with specimen depth

THE SIZE-EFFECT LAW (SEL)

In this model (Baiant & Pfeiffer 1986) which is applicable to materials whose
fracture front is blunted by a non-linear zone of distributed cracking and damage
(process zone), the fracture energy Gf (not to be confused with GF used previ-
ously) is defined as the specific energy required for crack growth in an infinitely
large structure, for which the LEFM is strictly valid. This definition is obviously
independent of specimen size and geometry, provided the law for extrapolating the
results of geometrically similar specimens of finite size to infinite specimen size is
known and is unaffected by other size effects, such as those due to hydration heat
or shrinkage.

An exact form of the scaling law for blunt fracture is not known, although
an approximate form which appears to be sufficient for practical purposes was
proposed by Badant (1984)

0 rN = Oft 4 7O'N / f(1 + !E ) , 7

in which aN = nominal stess at failure, g = maximum size of aggregate in the mixr,
and f, A0 = empirical constants. It appears that Eqn (7) is adequate for a size
range 1:30 and is not affected by alterations to the specimen geometry provided
W is appropriately reinterpreted.
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As applied to the notched three-point bend specimen, it is recommended that
the span-to-depth ratio SIW be at least 2.5. Moreover, it is recommended that
ao/W be in the range 0.15 < ao/W < 0.4, B and W not be less than 3g, and that
the notch width be as small as possible and not exceed 0.5g. For the scaling law
to retain its validity, tests have to be performed on specimens of at least three
different sizes, characterized by depths W1,. .. , W and loaded spa;..s S1,... , S,,. It
is necessary that the smallest depth W, not be larger than 5g and the largest depth
W. not be smaller than 15g, and that the maximum W to minimum W be at least
4. These size requirements may necessitate fabrication of very bulky specimens if
large size aggregate is used in the mix. It is also recommended that the ratios of the
adjacent sizes be roughly constant, with as broad a size range as feasible. Ideally,
the specimens of all sizes should be geometrically similar in two dimensions, with
the third dimension (width B) the same for all specimens to avoid introduction of
undesirable size effects of thickness.

In actual testing, one needs to record only the maximum loads P1,..., P,,. This
does not require the use of closed-loop systems and is thus a great advantage of
this method of testing. A linear regression of the depths Xj = Wj (j = 1, ... , n)
against the inverse square of the nominal stress at failure (= P/BW) is carried
out and the slope A of the regression line is determined

A = jx . (y -
zj(xj - X) ' (8)

where wheeEx, 1 E Y,. (9)

where Y = (BW/P') and (X, Y) defines the centroid of all data points. P* which
is related to P takes into account the self-weight of the specimen, the effect of any
overhang, i.e. if Lj is much larger than Sj, and of any geometrical dissimilarity in
the specimens (Karihaloo & Nallathambi, 1990a). Having determined the slope A
of the regression line (Fig. 5), the fracture energy G1 is calculated from

Gf= g (!0) /(EA), (10)

where the non-dimensional energy release rate is

and (coo ao/W)
F(ao) = F4(ao)-+-(Sn/Wm)-4 [Fs( ao)'- F 4(aO)], (12)

4

F4(ao) = 1.090 - 1.735a 0 + 8.20%0 - 14.18c0 + 14.57c0, (13)

Fs(ao) = 1.107 - 1.552ao + 7.71c - 13.55o + 14.250 (14)
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Figure 5: Linear regression plot constructed from measured maximum load values

In Eqn (11), S,, and W,, are respectively the median span and median depth
of the group of geometrically similar specimens. The interpolation formula (12)
is not recommended for use outside of the range 3 < S/W < 10. Since LEFM is
applicable at the limit of extrapolation, the fracture toughness may be calculated
from fracture energy G1 using the plane stress relationship

Kbe= vrG . (15)
Finally, in order to establish the confidence level of calculated G! it is necessary

to perform statistical analysis of the test data. In particular, it is necessary to
calculate the coefficient of variation WA of the slope of regression line A and the
relative width of scatte-band m. It is suggested that WA not exceed about 0.08 and
the value of m be around 0.15. These statistical measures prevent situations in
which the size range used is insufficient compared to the scatter of results. Three
such situations are illustrated in Fig. 6. Fig. 6a shows the situation in which A is
,incertain, while Fig. 6b illustrates the case of large scatter necessitating the use
of a very broad range of sizes. Fig. 6c on the other hand illustrates the case of
small scatter permitting the use of a narrow range of sizes.

It should however be borne in mind that since the value of WA can be reduced
by increasing the number of test specimens even with a wide scatterband, it is
necessary also to limit the value of m, in addition to limiting the value of WA.
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Figure 6: Examples of correct and incorrect regression plots

A summary of results according to SEL based on test data from several labo-
ratories (Karihaloo & Nalathambi 1990a) is given in Table 2.

THE EFFECTIVE CRACK MODEL (ECM)

The effective crack model (Karihaloo & Nalathambi 1986a, 1989a) is based on

the assumption that the effect of various (non-linear) energy consuming processes
taking place in the fracture process zone can be represented by a supplementary

traction-free crack (Fig. 7). The latter, when added to the pre-existing notch

depth a0 gives the size of the effective notch a,. It is evident that this assumption
is also made in the TPM. However, as will become clear in the sequel, the method

of determining ae differs from that of in TPM. What is more important, it is

much easier to determine e accurately than it is to determine g without the use
of a servo-hydraulic testing machine. That is the major advantage of ECM over
TPM, otherwise in principle they are very similar.

It is also obvious from Fig. 7 that the size of the traction-free supplementary

crack Aae = ae - ao cannot be equal to the size of the fracture process zone which
has residual stress carrying capacity..

The application of ECM to notched three-point bend specimen (Fig. 8) does

not require any load/deflection information past the peak load. However, if a

closed-loop testing machine is available, then CMOD or load-point displacement

may be used as a feed-back signal to achieve stable failure.
The Young modulus (E) of the mix is calculated from the initial, linear segment

of the continous load-deflection plot. However, if such a plot cannot be obtained, E
may be determined by testing cylindrical specimens, preferably using two electrical

strain gauges with gauge length at least 3g glued opposite to each other at mid-
height.
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Table 2. Summary of Results According to SEL

S1. g n Size, mm ao/W A G1  KOC WA M
No. S B W (Jim)

1 6 060080076
2 4 100080 140
3 20 4 1200 80 200 0.200 0.759E-01 22.986 0.874 0.144 0.161
4 4 1500 80 240
5 4 1800 80 300

6 6 060080076
7 4 100080140
8 20 4 1200 80 200 0.300 0.123E-00 23.989 0.892 0.185 0.211
9 4 150080240
10 4 1800 80 300

11 6 060080076
12 4 1000 80 140
13 20 4 1200 80 200 0.400 0.231E-00 21.600 0.847 0.102 0.121
14 4 1500 80 240
15 4 1800 80 300
16 3 095 38 038
17 3 191 38 076
18 13 3 381 38 152 0.167 0.578E-02 42.531 1.084 0.133 0.146
19 3 762 38 305

20 3 095 38 038
21 3 19138 076
22 5 3 381 38 152 0.167 0.873E-02 23.670 0.883 0.031 0.048
23 3 762 38 305
24 3 0400 100 100
25 19 2 0800 100 200 0.400 0.270E-01 71.059 1.520 0.537 0.585
26 2 2000 100 500

27 8 0400 100 100
28 2 0800 100 200
29 19 2 1200 100 300 0.200 0.709E-02 94.058 1.751 0.331 0.435
30 1 2000 100 500
31 1 3200 100 800

1. g = Max. aggregate size in mm; n = Number of specimens tested.

2. Of the hundreds of specimen groups for which peak load values were available only
the above few groups satisfied the rather strict size requirements of SEL. Even for
these few groups, statistical measures (wA should be less than 0.08 and m should be
about 0.15) point towards poor quality of results.

3. Extreme care should be exercised in determining slope of regression line A. A slight
error in its determination can significantly alter Gf.
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Figure 8: Loading apparatus and LVDT fixing arrangement
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Figure 9: Typical load-deflection plots up to peak load for various ao/W ratios

Typical load-deflection plots up to the peak load are shown in Fig. 9, for
various ao/W ratios. It should be emphasized that these plots need not be drawn
continuously; it is sufficient to measure mid-span load-point deflection at several
load levels up to the peak load. From these plots, P, P,..' (P in linear range) and
the corresponding mid-span deflections 6i, 6p are read, and E calculated from the
following equation (Karihaloo & Nallathambi 1989a)

£ ~ 4) (i 2.70 + 1.35q} -0.84 (!)3]

9P A qS 1 S

where q is the self-weight of the beam per unit length, and

F,(ao) = 0 8F"()d, (17)

with ao = ao/W, and for S1W = 4, F(#) is given by Eqn (5). A slightly less
accurate expression (error < 1%) for F1(#) is available in the range 0.1 < 3 < 0.6
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for two span to depth ratios (S/W = 4 and 8) with linear interpolation permitted
within, and outside of, these ratios

FI(l) = A + A,# + A2 2 + A3 3 + A4#4 (18)

where

Ao = +0.0075- + 1.90

S
A, = +0.0800-L - 3.39w

S
A 2 = -0.2175- + 15.40 (19)

A3 = +0.2825- - 26.24w
A 4 = -0.1450-+26.38

The coefficients Ai(i = 0, 1 .... 4) have been obtained by linear interpolation from
the coefficients given by Brown & Srawley (1966) for S/W = 4 and 8.

The reduction in the stiffness of the beam (Fig. 8) is a result of both the stable
crack growth and the formation of the discontinuous process zone ahead of the
visible crack. It is however difficult to separate these two causes. Therefore it
is assumed that the critical notch depth ae may be calculated by introducing a
fictitious beam containing a notch a, whose unchanged stiffness (proportional to
E) would be equal to the reduced stiffness of the real beam containing a notch of
depth a0 , i.e.

r qSP BE W8P ax TPn1P 1+ (W ) 2 { f .0+ 3 5 LS- -0.84 ( W 3

9 JR S \ 52
2Pz max 1)qF2(Cke), (20)42BE 2a

where
F2(a,) = 23F2(3) d# (21)

Here a, = a./W and F(/3) is again given by Eqn (5) or Eqn (18). It will be noticed
that Eqn (20) equates the stiffnesses and not the energies, as should be done in
the ECM. Later in this lecture, we shall use the actual comparison of energies and
shall show that a, thus calculated is indeed very close to that calculated from Eqn
(20).

a, = a,/W is calculated from Eqn (20) by a trial and error procedure described
by Karihaloo & Nallathambi (1989a). This procedure was applied to all notched
three-point bend test data available to the authors from various laboratories (Kar-
ihaloo & Nallathambi 1990a) and the corresponding a,/W was calculated. The
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following regression equation gave the best fit

a(22)

where, as before, g is the maximum size of the aggregate used in the mix, an =
6M/(BW2 ), M = (Pax + qS/2)S/4, and -fl = 0.088 ± 0.004, 72 = -0.208 -

0.010, -y3 = 0.451 ± 0.013 and y4 = 1.653 ± 0.109. The elastic modulus E in Eqn
(22) was determined from the initial, linear segment of the load-deflection plot
using Eqn (16). This method of determining E is more consistent with the ECM.
Having determined the effective crack length ae, the critical stress intensity factor
according to the ECM is calculated using

K ',= O,, %la F. (,. / WF), (23)

where Fi(ae/W) is given by Eqn (5) or Eqn (18).
It is possible to improve the above expression Kc by considering the true state

of stress at the front of a pre-crack in a three-point bend specimen. Elastic finite
element calculations show (Nallathambi & Karihaloo 1986b) that this stress field
consists not only of a tensile stress normal to the crack plane (as assumed in the
derivation of Eqn (23)) but also of a significant (tensile) stress in the crack plane
and of a shear stress. By making an allowance for the true stress state ahead of
the existing crack front, Eqn (23) becomes

IC = a, V 7 Yi(a) Y2(a,), (24)

where as before a = a,/W, # = SIW, and

Y(a) = Ao+A la+A 2&
2 + A 3a

3 + Aa 4  (25)

Y2(a,fl) = Bo+B +B 2 p
2 + B 3

3 + B4ao 3+ Bsak 2  (26)

Regression coefficients A, Bj, (i = 0, ...,4; j = 0, 1, .5) are given in Table 3.

Table 3. Regression coefficients A, Bj(i = 0, ..., 4; j = 0, ..., 5)

i/i 0 1 2 3 4 5
A, 3.6460 -6.7890 39.2400 -76.8200 74.3300 -

B, 0.4607 0.0484 -0.0063 0.0003 -0.0059 0.0033

Fig. 10 shows the relative variation of Kc with specimen depth. The plots refer
to different mixes. It is clear that Ke is reasonably independent of the size of the
specimen. Further decrease in variation is expected when the tests are conducted
in strict accordance with the requirements of the ECM.

Tables 4 and 5 compare the fracture parameters Kc, Aae predicted by the ECM
with the predictions from the TPM and SEL (Nallathambi & Karihaloo, 1990a)
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Table 4. Summary of Results According to (ECM) & (TPM)

Sl n g fr E Range Range Range K1e, IC CTODc

No ao/W ae/W g/W Mean(sd) Mean(sd) Mean(sd)
1 90 2 44.3 26.3 .20.60 .27-.63 - 0.633(.065)
2 84 5 42.1 29.3 .20-.60 .27-.64 - 0.641(.057)
3 60 10 40.3 32.0 .20-.50 .28-.56 0.706(.046) -

4 30 14 40.9 32.6 .20-.40 .28.47 - 0.728(.018)
5 30 20 37.6 33.0 .20-.40 .29-,49 0.776(.028) -

6 76 20 38.0 33.2 .20-.60 .29-.69 0.884(.057)
7 6 19 55.8 36.8 .29-.67 - .55-.81 - 0.931(.263) .0148(.0076)
8 3 19 53.1 38.4 .29-.50 .36-.55 .41 0.965(.045) 1.054( - ) .0200(.0085)
9 3 19 54.4 39.3 .30-.67 .37-.73 .42-.73 1.145(.098) 1.128(.269) .0316(.0067)
10 20 19 53.1 38.4 .15-.61 .23-.68 .44-.83 0.797(.075) 1.146(.014) .0312(.0087)
11 20 19 54.4 39.3 .19-.57 .27-.63 .40-.71 0.971(.078) 1.220(.102) .0042(.0013)
12 12 10 29.0 21.7 .50-.50 .54-.55 - 0.760(.039) -

13 8 10 58.9 24.5 .30-.50 .37-.55 0.908(.068) -

14 8 10 33.1 19.7 .50-.50 .54-.55 0.859(.091) -

15 15 10 55.5 29.8 .20-.50 .27.55 1.023(.052) -

16 14 20 36.2 24.0 .50-.50 .53-.55 1.031(.129) -

17 15 16 38.3 34.1 .33-.33 .40-.41 1.120(,217) -

18 8 19 29.0 32.5 .20-.40 .27-.47 1.413(.272) -

19 4 19 34.3 33.2 .20-.40 .28-.48 1.759(.172) -

20 16 19 26.3 32.0 .20-.40 .28-.48 - 1.232(.147) -

21 12 3 - 36.8 .13-.50 .18-.56 .15-.56 0.926(.061) 0.894(.068) .0042(.0013)
22 2 6 60.7 33.5 .19-.21 .28-.29 .25-.28 1.221(.061) 1.141(.095) .0145(.0057)
23 3 13 45.5 31.0 .19-.21 .27-.29 .25-.35 1.429(.046) 1.475(.191) .0220(.0086)
24 3 13 43.4 31.0 .20.21 .28-.29 .24-.28 1.610(.026) 1.530(.022) .0169(.0024)
25 12 13 34.1 27.7 0.975(,150)
26 12 5 48.4 32.9 - - 1.004(.068) -

27 8 19 25.2 27.2 .29-.33 .36.40 .35-.55 0.982(.169) 0.976(.103) .0170(.0068)
28 6 13 48.5 33.3 .50-.51 .62-.73 - 0.421(.091) -

29 11 8 93.0 32.0 .50-.50 .53-.54 - 1.198(.199) -

30 11 8 28.0 31.0 .50-.50 .55-.57 - 0.830(.117) -

31 6 12 68.0 39.0 .50-.50 .55-.57 - 1.356(.101) -

32 6 12 21.0 26.0 .50-.50 .57-.58 - 0.727(.038) -

33 17 32 31.0 32.3 .50-.50 .56-.57 1.585(.210) 1.211(.121)
34 11 2 35.0 25.7 .50-.50 .53-.58 1.102(.098) 0.790(.090)
35 2 8 110. 56.6 .33-.33 .37-.38 1.896(.064) 2.130( - ) .0338(.0039)

Notes:

1. g = Max. aggregate size in mm; n = No. of specimens tested.

2. fc in MPa, E in GPa, FKc in MPav/"i, CTODC in mm.

3. Absence of an entry in KIj' and CTOD, columns means that load-CMOD plot was
not available.
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Table 5. Summary of Results According to ECM & SEL

SI g n Size, mm ao/W A G/ KIO WA m KeIC
No S B W (J/m) Mean(sd)
1 6 060080076
2 4 100080 140
3 20 4 1200 80 200 0.200 0.07590 22.986 0.874 0.144 0.161
4 4 150080240
5 4 180080300

6 6 060080076
7 4 1000 80 140
8 20 4 1200 80 200 0.300 0.12300 23.989 0.892 0.185 0.211 0.867(.063)
9 4 150080240
10 4 180080300

11 6 0600 80 076
12 4 1000 80 140
13 20 4 1200 80 200 0.400 0.23100 21.600 0.847 0.102 0.121
14 4 1500 80 240
15 4 180080300
16 3 09538038
17 3 191 38 076
18 13 3 381 38 152 0.167 0.00578 42.531 1.084 0.133 0.146 0.975(.150)
19 3 70238305

20 3 095 38 038
21 3 191 38 076
22 5 3 381 38 152 0.167 0.00873 23.670 0.883 0.031 0.048 1.004(.068)
23 3 762 38 305
24 3 0400 100 100
25 19 2 0800 100 200 0.400 0.02700 71.059 1.520 0.537 0.585 1.264(.293)
26 2 2000 100 500

27 8 0400 100 100
28 2 0800 100 200
29 19 2 1200 100 300 0.200 0.00709 94.058 1.751 0.331 0.435 1.208(.260)
30 1 2000 100 500
31 1 3200 100 800

Notes:

1. g = Max. aggregate size in mm; n = Number of specimens tested.

2. All Kic values are given in MPaV/"m.

3. For the purposes of comparison G/ has been converted to an equivalent fracture
toughness value Ke1. using the LEFM plane stress relationship K =

4. See also notes 2, 3 appearing after Table 2.
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Figure 10: Variation of relative K! with specimen depth

COMPARISON OF ECM WITH TPM

As seen from Table 4 the fracture parameters of plain concrete calculated using
the effective crack model(ECM) and the two parameter model(TPM) are in good
agreement despite the fact that they were determined from essentially separate se-
ries of test data. This was because of the paucity of simultaneous load-displacement
and Ioad-CMOD measurements from one and the same three-point bend specimen.

An investigat.*,n was conducted (Nallathambi & Karihaloo, 1990a) to compare
the results of the two models using the necessary data from the same test spec-
imens. To achieve this aim, both load-displacement and Ioad-CMOD plots are
simultaneously recorded for all notched specimens tested in three-point bending.
A further aim of this investigation was to make this comparison for a wide variety
of concrete mixes, ranging in (cylinder) compressive strength from about 25MPa
to nearly 80MPa.
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It is found that irrespective of the concrete strength, the fracture parameters
calculated using the effective crack model (namely, the effective fracture toughness
Kj' and the effective traction-free notch length ae) are practically indistinguish-
able from the corresponding parameters calculated using the two parameter model
(namely, the fracture toughness K € and the notch iength a; the latter being also
used to determine the critical crack tip opening displacement(CTODc)).

Table 6 shows selected mix properties and the elastic modulus E calculated in
four different ways, both direct and indirect. It will be appreciated that all four
values of E for each of the mixes are in very good agreement with one another.
This proves conclusively that any variations in fracture parameters between various
models (Hillerborg's cohesive crack, BCM, TPM and SEL) cannot be attributed
to differences in the measurement of E.

Table 6. Mix Properties

Compressive Tensile
Strength Elastic Modulus, (CPa) Strength

Mix f(MPa) E- E,- - Et fO(MPa)
C1 26.8 24.62 24.51 25.56(.35) 25.04(.29) 2.58
C2 39.0 33.80 29.56 29.87(.21) 31.56(.64) 3.11
C3 49.4 34.65 33.27 33.28(.22) 32.96(.24) 3.50
C4 67.5 37.20 38.89 37.13(.23) 38.39(.82) 4.09
C5 78.2 40.30 41.86 40.99(.60) 40.26(.99) 4.41

Notes:
Determined from separate cylinder tests (using strain gauges)
Estimated from the relationship, Ec = 4734 /'MPa (=57000VTpsi)

t Calculated from P - 6 plot
: Calculated from P - CMOD plot
® Estimated from the relationship, ft -0.4983v'7 , MPa (=6VTpai)

Table 7 shows the fracture parameters calculated according to ECM and TPM.
As mentioned above, the agreement between the two models is excellent. It should
however be mentioned that the regression formula (Eqn 22) overestimates slightly
the values of ae/W (see Table 7). It is therefore recommended that ae be cal-
culated from Eqn (20) using the trial and error procedure given by Karihaloo &
Nallathambi (1989a).

Another approach to comparing ECM with TPM is by calculating the tensile
strength fl, the total work of fracture Wd, and/or the critical crack opening w,
using the pair of fracture parameters defined by these models. These additional
(but dependent) parameters are in any case required for a full description and
finite element implementation of the fracture process. As an additional benefit this
comparison approach allows us to put Aa. on a sound physical foundation. It will
be recalled that Aa, was calculated above from a comparison of stiffnesses, whereas
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Table 7. Fracture Parameters for Various Mixes

Mix/ C1 02 03 04 05
Data Mean(sd) Mean(sd) Mean(sd) Mean(sd) Mean(sd)
ao/W 0.295( .001) 0.296( .000) 0.295( .001) 0.293( .003) 0.293( .003)
ae/Wt  0.443(.005) 0.441(.001) 0.435(.004) 0.428(.002) 0.419(.006)
ae/Wt 0.447(.003) 0.454(.001) 0.446(.003) 0.442(.004) 0.426(.008)
g/WE) 0.443(.015) 0.442(.006) 0.436(.001) 0.430(.002) 0.413(.006)

Kle, 0.992(.015) 1.265(.013) 1.376(.020) 1.502(.046) 1.881(.095)
KI", 0.993(.054) 1.269(.028) 1.381(.031) 1.509(.040) 1.847(.098)

CTODC 0.033(.010) 0.026(.001) 0.026(.001) 0.024(.001) 0.026(.001)

t ECM
I Eqn 22

Notes: 0 TPM

K1 , in MPa~,Wi, CTODC in mm

the basic assumption in ECM is that it be determined by equating the actual work
of fracture Wd with the energy required to create a hypothetical supplementary
traction-free crack A±a. = a,. - a0 . This will be done in the sequel.

For the above comparison approach to work, it is necessary to judiciously ap-
proximate the post-peak tension softening diagram. For simplicity this diagram is
usually approximated by a linear segment, although the present authors have re-
cently given an analytical solution (Karihaloo & Naflathambi, 1989b)' for a highly
non-linear law that better approximates the observed post-peak behaviour (Fig. 11)
particularly at P,,,a., (horizontal tangent at a = ft).

The transmitted stress-displacement law in the post-peak region is approxi-
mated as follows:

a* W
-I - - (Linear) (27)

W,

11=i- 9.2431 #2 + 33.8259,83 - 59.4248/34 + 49.300009" - 15.4722,96] (Non-11n),

(28)

where 09 = w/w,.
For the assumed a - w laws it was shown by Naflathambi & Karihaloo, (1990b)

that

KI,= 0.7071V /E "W~ft

Wd = j'0 j f-'(w)dwds = 0.1050E'wc . (Linear law) (29)

1Several unfortunate errors in this paper have been corrected in (Nailathainbi & Karihaloo

1990b).
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Probable stress distribution

ft --- _=[i-9.2431 (_,L) 2 + 33.8259 (L3- 59.4248(L)

+ 49.3000 &L)* - 15.4722 X]

W4 we

Figure 11: Approximations t41o tension-softening diagram

and

KI,= 0.7043F IfY

Wd = J" f1 '(w) dw ds = 0.0521E'wc. (Non-linear law) (30)

where f-'(w) represents the right hand side of Eqns. (27, 28). Equating Wd to

(Klc 2 /E)Aae giveq

Aae = 0.210Ewl/ft (Linear law)

Aa, = 0.105Ewl/ft (Non-linear law)

Finally, one may also calculate the critical process zone size fpc corresponding to
the two assumed a - w laws:

IC= 0.366Ew,/ft (Linear law)

= 0.359Ew~/f, (Non-linear law) (31)

Using the pair of fracture parameters (Ku", Aa,) or (Kj',Aa) from Table 7 in
Eqs. (29)-(31) one can calculate w,, without knowing f, and compare it with the
CTODc of the TPM (Table 7). The results are given in Table 8.
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Table 8. Additional Material Parameters Calculated From ECM and
TPM

CTODC w,(m) ft ft(MPa) £f,(mm)
Mix (mm) Lin Non-lin Lin Non-lin Lin Non-in
C1 0.0332 0.0208 0.0296 2.58 3.70 2.63 52.6 103.1
C2 0.0263 0.0213 0.0318 3.11 4.78 3.39 51.2 100.4
03 0.0261 0.0219 0.0305 3.50 5.29 3.76 49.5 97.0
C4 0.0242 0.0202 0.0293 4.09 5.88 4.18 47.7 93.6
C5 0.0261 0.0221 0.0322 4.41 7.61 5.40 44.8 87.8

mean 0.0272 0.0216 0.0307

Note: I calculated from the empirical relationship ft = 0.4983v7/T,(MPa)

It is evident from Table 8 that the CTODC according to TPM agrees better
with the authors' non-linear approximation. The same is true, if one now uses
the calculated values of wc to determine ft and fpc (Eqn 31) and compares the
resulting ft with that given by the well-known empirical formula (Table 8). It
is worth noting that ft is the only material parameter for which an independent
formula, albeit an empirical one, exists. There is at present no similar independent
way of checking the accuracy of CTOD, or 4p. It would seem though that the
linear a - w approximation underestimates both wc and 4 .

COMPARISON OF FCM, ECM, TPM AND SEL

The above comparison was restricted to two methods, namely TPM and ECM.
Moreover, the comparison was based on the fracture parameters determined using
these methods. To the extent that both these methods approximate the actual
pre-peak behaviour and use LEFM, albeit after accounting for the stable slow
crack growth, it is advisable to compare them at the asymptotic limit of large size
structures when LEFM is strictly applicable. The comparison will not be restricted
to TPM and ECM but will also include SEL and fictitious cohesive crack model
(FCM) of Hillerborg et al. (1976).

The methodology for such a comparison was proposed by Planas & Elices (1987)
and will not be repeated here. Readers will find a succinct account in the report
by Karihaloo & Nallathambi (1990a). It will suffice here to summarize the major
conclusion reached by Planas & Elices. It should be mentioned though that Planas
& Elices did not include ECM in their comparison. However, their methodology
was recently followed by Karihaloo & Nallathambi (1990b) and applied also to
ECM.

The major conclusion flowing from this extensive comparative study is that all
four models are able to predict accurately the maximum load carrying capacity of
concrete specimens in the practical range of sizes used in the laboratory but that
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Figure 12: Ratio of GF,ee,,,. (FCM with quasi-exponential softening) to GF,md
predicted for large sizes by ECM, TPM, SEL and FCM with linear softening

the predictions for large size structures are less accurate. The latter part of this
conclusion is illustrated on Fig. 12 which compares the predictions of the various
models in the limit as the representative size of the structure (D,) tends to infinity.
It should be mentioned that the comparison for ECM is only applicable to notched
beam geometry and not to the other two geometries shown in Fig. 12.

Planas & Elices argue that the reason for the diEcrepancy among the models at
large sizes is due to the inconsistency in the definition of size effect in the various
models and therefore in that of the fracture energy based on this effect. It should
however be mentioned that the prediction of ECM is the least conservative of the
models studied.

MODE I FRACTURE TOUGHNESS FROM COMPACT SPECIMEN
GEOMETRIES

In the foregoing we analysed and compared four methods (models) for determin-
ing mode I fracture toughness of concrete from notched three-point bend speci-
mens. Only three of these models (TPM, SEL, ECM) were considered by Sub-
Committee A. FCM was included in the above discussion for completeness of pre-
sentation. Except for ECM which is applicable only to notched three-point bend
geometry, it is claimed that TPM, SEL and FCM can be applied to -. , geometry.
We shall however see in the sequel that their applicability to geometries other than
the notched three-point bend is not fully validated. In fact, it would seem that
CTOD of TPM is particularly susceptible to geometry and cannot therefore be
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regarded as a material parameter without further validation. K1 on the other
hand, would seem to be relatively insensitive to geometry changes.

Sub-committee B which analysed three compact geometries did not choose any
of the above models per se as a starting point. Nevertheless, it is clear that its
approach can be regarded as a judicious mix of the effective -Griffith crack model
(which forms the basis of TPM and ECM) and the scaling law (extrapolation to
infinite size specimens) implied in SEL (Rossi et al. 1990). They started from the
same premise as SEL, namely that LEFM is strictly applicable in the asymptotic
limit of very large concrete structure (representative size D --+ oo). They claim
that it is possible to obtain the intrinsic KI, for ordinary concrete using a DCB
test specimen 3.5m long and 1.1m wide. They recognized however the difficulty
associated with handling and testing such a specimen in a normal laboratory and
proposed to carry out parallel tests on small specimens. The latter will yield non-
objective Kc (i.e. size-dependent K,), whilst the large specimens would yield the
objective Kit. Their aim is to find an analytical relation between these two KI,
with a view to establishing the scaling law (scale factor). If this aim is attained,
then it would be possible to determine the intrinsic fracture toughness of 'in-situ'
concrete from core samples.

With these two broad objectives in mind Rossi et al. (1990) chose the tapered
DCB (Fig. 13) as the infinitely large specimen for determining the objective KI, and
cylindrical and cubical wedge splitting geometries (Fig. 14) as the small specimens
for determining the non-objective KI,. The choice of the last two geometries was
dictated by the desire to accommodate on the one hand core samples drilled from
existing concrete structures and dams and on the other fresh concrete specimens
prepared using large aggregate (Jenq & Shah 1988).

The crack opening displacement was used as the feedback signal to obtain stable
failure. Loading and unloading were performed during the test to determine the
compliance function that was approximated by only four data points (crack lengths)
resulting in a surprising inflexion point in the compliance function. Rossi et al.,
(1990) are aware of the inaccuracies so caused and have also used the program
FRANC to improve the accuracy. A sample calibration curve is shown in Fig 15
for the cubical WS specimen.

Typical load-COD plots for the three geometries are shown in Figs. 16-18,
respectively. Concrete A refers to a mix with f, = 51 MPa, E=36.6 GPa and
indirect tensile strength = 3.7 MPa, whereas concrete B refers to a mix with
the corresponding properties 55 MPa, 36 GPa and 4.5 MPa, respectively. The
maximum size of aggregate used in concrete A was 20mm and that in concrete B
was 12.5mm.

Finite element calculations were performed to establish the compliance function

C(a) for each geometry. However, the above remark regarding the accuracy should
be borne in mind in the practical use of these functions.
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Figure 13: The tapered double cantilever beam (TDCB) specimen.

TDCB Specimen (0.55:5 a < 1.55mn):

C(a) = !-(3410.75a 3 - 7470.05a 2 + 5700.1a - 1281) (rn/N) (32)

Cubical WS Specimen (0.059 < a < 0.15m):

C T)= 04(268.1a 3 - 58.7a2 + 4.4a - 0.1) (rn/N) (33)

Cylindrical WS Specimen (0.047:5 a <5.0.09m):

106 3
C(a) = 11-(33.03a3 - 5.19a2 + 0.28a - 0.005) (rn/N) (34)

Then from the standard plane stress relationship between the stress intensity
factor and rate of change of compliance with crack growth the following expressions
for the R-curve result:
TDCB Specimen (0.55:5 a < 1.55m):

K,(a) 1 -(10232.25a 2 - 14940.1a + 5700.1 )1/2 F (MPa~'-), (35)
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Figure 14: The cylindrical and cubical wedge splitting specimens, showing the load
application device.
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Figure 15: Stress intensity factor per unit applied force vs the crack length for the
cubical WS specimen
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Figure 16: Load-COD plot for TDCB specimen from concrete A
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Figure 17: Load-COD plot for cylindrical WS specimen from concrete B
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Cubical WS Specimen (0.059 < a < 0.15m):

1002/2
Kj(a) = -20B(804.3a - 117.4a + 4.4)112 F. (MPav'), (36)V B

Cylindrical WS Specimen (0.047 <a < 0.09m):

K-(a) -1 (99.09a2 - 10.38a + 0.28)1/2 F (MPav/m), (37)

where B = thickness of the specimen.
To avoid having to use unreliable surface observations of crack advance, Rossi

et al. (1990) use the notion of effective crack. The length of this crack aeff is
determined by equating the experimental compliance of the real crack having an
irregular front preceded by a microcracked zone with that of an effective crack with
a regular front (Fig. 19).

They also calculate an effective elastic modulus Ef1 ! for use in compliance
expressions (32)-(34). It is calculated by matching the theoretical compliance cor-
responding to a0 with the experimental compliance during the first loading (i.e.
in the elastic domain before the formation of any microcracks at the notch tip).
The critical stress intensity factor K1, for each geometry is then calculated from
(35)-(37) with a replaced aef! and E by Ef1 1 .

Typical K1, - a,f curves for the three geometries are shown in Fig. 20-22
respectively.

It is claimed that the mean value of the objective K1, following from the TDCB
specimen is 2.21 and 2.11 MPa.i- for mixes A and B respectively, whereas the
mean value and variation = (K1c),maz - (K1,),.i,/(KIc),ne, of the non-objective K1,
determined from cylindrical WS specimen is 1.44 (33.7%) and 1.52 (14.3%) for
mixes A and B, and from cubical WS specimen is 1.82 (17.4%) and 1.97 (11.8%),
respectively.

Rossi et al. (1.990) have shown that as the TDCB specimen is tested in a vertical
position, the influence of the self-weight upon KI, is negligible. They also claim
that the influence of the reinforcing bar (required for suspending the specimen) on
the energy consumption is negligible. This is a rather doubtful claim in the light of
the stiffening effect of the reinforcing bar on the TDCB system as a whole. It would
be helpful if Rossi et al. could provide some quantitative estimate of this stiffening
effect. Until such further evidence is forthcoming, the objective Kc determined
from the TDCB must be regarded with caution.

They also propose the following regression equations for calculating the objective
K1 c of plain concrete from the results of small specimens

Ki,(Cubical WS) = K,,(TDCB)(1.075 - 0.075--) (38)
g-

Kj,(Cylindrical WS) = Ki,(TDCB)(0.802 - 0.0 4 2 ±) (39)
go
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where g* = 6mm and 6 < g(mm) < 20.
They have also calculated the specific fracture energy GF as a function of the

ligament length and found that it increases with increasing h, besides the maximum
aggregate size, g. It is reasoned that the increase in GF with h (Fig. 23) is because
of the changes in the width and length of the fracture process zone as it propagates
along the ligament, so that the longer the ligament, the more energy is expended
outside of the localized fracture process zone.

Based on GF and K10 , the Sub-committee report ends with the finite element
evaluation of the maximum load based on a bilinear approximation to the tension-
softening diagram, in much the same manner as it has been done by Petersson
(1981).

CONCLUDING REMARK

The aim of this lecture was to review the various test methods and models con-
sidered by sub-committees A and B of RILEM TC-89 (FMT) and to present the
results as they appear in the final reports of these sub-committees, with very occa-
sional remarks on the drawbacks of one method or the other. In a general review
of this nature it is very tempting to criticise methods or models which may be
competing with one's own. It is to be hoped that this reviewer has avoided that
temptation, and that the presentation will result in a lively debate and discussion
which will be included in the final version of this paper.
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ABSTRACT. The lecture reviews several recent results achieved at Northwestern University
in the problem of size effects and nonlocal concepts for concrr." and other brittle hetero-
geneous materials, and presents a new method for calculating the load-deflection curves of
fracture specimens or structures with time-dependent crack growth and viscoelastic material
behavior. The results reviewed deal with the size effect law in fracture and its exploitation for
determining material fracture characteristics, statistical generalization of the size effect law
with a nonlinear reformulation of Weibull's weakest-link theory, determination of the size
dependence of the fracture energy determined by work-of-fracture method, nonlocal models
for smeared cracking and damage, microstructural determination of the nonlocal material
properties and fracture process zone behavior, size effect in fatigue fracture of concrete, and
use of the size effect for determining the fracture properties of high-strength concrete.

1. Introduction

Fracture analysis of concrete structures has to deal with two important complicating
characteristics: the distributive nature of cracking and damage in concrete, which causes the
fracture process zone to be relatively large and engenders a size effect, and time dependence
of both the crack growth and the material behavior. The nonlinear behavior caused by
the existence of a large fracture process zone has been in the focus of attention for some
time and its treatment is becoming quite well understood 11-3, etc.]. Attention to the size
effect is more recent [8] but it has already led to some useful extensions of fracture theory
and a new method for determining material fracture properties 14-7, 9-12]. The existence
of the rate effect has been known for a long time and has been studied extensively with
regard to dynamic fracture. However, the nonlinear fracture aspects of the rate effect, which
are manifested in interaction with the size effect, have not received attention until recently,
although they are no doubt very important for predicting the response of structures.

The present lecture intends: (1) to present a new effective and relatively simple method
for calculating the load-deflection response of a structure with a large fracture process zone,
time-dependent fracture growth, and viscoelastic material properties; and (2) to review
several recent results achieved at Northwestern University. No claims for exhaustive or
even balanced coverage of the latest developments are made. Due to exploding research
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activity, this would be beyond the scope of the present paper.

2. Review of Some Recent Results

2.1 A REVIEW OF SIZE-EFFECT - THE SALIENT CHARACTERISTIC OF FRAC-
TURE

The structural size-effect is the most important characteristic and the easiest measur-
able consequence of nonlinear fracture behavior. Considerable attention has been devoted at
Northwestern University to the phenomenologic description of the size effect [8-12] as well as
its physical mechanism. We will begin by a brief overview of the latest phenomenologic char-
acterization of fracture in terms of the size effect and the consequences for the measurement
of fracture properties.

The size effect may be defined in terms of the nominal strength aN = cP,,/bd (for
2D) or cP./d2 (for 3D) in which P, = maximum load of geometrically similar specimens
of size d (dimension) and, in case of two dimensions, thickness b; C = factor chosen for
convenience. Under the assumption that there is a large fracture process zone that is not
negligible compared to d, and that the crack at failure of geometrically similar structures of
different sizes is also geometrically similar, the nominal strength approximately obeys the
size effect law [8]:

0,N = Bf.(1 +,8)-1,2, 6 "- d/do (1)

in which f,, = any measure of material strength, e.g., the tensile strength, and B, do =
empirical constants. This law describes a smooth transition from plastic limit analysis, for
which there is no size effect (aN = constant) to linear elastic fracture mechanics (LEFM),
for which the size effect is the maximum possible, given by 0 N oc p-1/2. The plot of Eq.1
is shown in Fig.l. The horizontal asymptote represents the limiting case of plastic limit
analysis, and the inclined asymptote of slope - 1/2 the limiting case of LEFM. Parameter do,
called the transitional size, corresponds to the intersection of these two asymptotes. Eq.1
has originally been derived by dimensional analysis and similitude arguments, based on the
hypothesis that the energy release due to fracture depends not only on the fracture length
but also on a second length characteristic that is approximately a material property and
characterizes either the effective length or the effective width of the fracture process zone,
or the nonlocal properties of an equivalent continuum.

Under certain further simplifying assumptions based on equivalent LEFM, it has been
shown [11] that the size effect law from Eq.1 can also be written in the form

aN= ,EG¢ ,1/2(2
oN = (g(o)c + g(o)d) (2)

in which Gf = fracture energy of the material, defined as the energy required for crack
propagation in an infinitely large specimen, E = Young's elastic modulus, c! = effective
length of the fracture process zone in an infinitely large specimen (a material constant), c0
= ao/d, a0 = length of initial notch of crack, and g(a) = non-dimensionalized energy release
rate of the specimen of the given geometry, which is obtained by writing the LEFM solution
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for the energy release rate in the form G = P 2g(a)/E b2 d where P is the applied load or
reaction, ci = a/d, a = a0 + c, c = crack extension from the notch or initial crack tip. These
formulas are valid for plain stress. For plain strain or axisymetric propagation, E must be
replaced by E/(l - v2). Defining the so-called intrinsic strength 'N = (P/bd)g'(ao) and
intrinsic size d = g(ao)d/g'(ao), one can rewrite Eq.2 in the form

( EG, \112
TN = E + 1/ (3)

(cf + d)

which involves only material constants EG and cf. Comparing Eq.2 or 3 with Eq.1, one
gets the following expressions for material fracture constants

= 2f,2. g(Qo)

G!= Cfog(no), = dog('o) (4)

Thus, after measuring the maximum loads for geometrically similar specimens of sufficiently
different sizes, one can determine B and do by least-square fitting all the data (Eq.1 can
be rearranged to a linear regression plot), and then evaluate the fracture energy and the
effective process zone length from Eq.4 (strictly on the basis of maximum load data). This
method is probably the easiest to implement in the laboratory (even a soft testing machine is
adequate and no measurements of displacements or crack lengths are required). The method
has been verified by numerous tests on concrete and rock. The results are, by definition, size
independent and they were also proven to be approximately shape independent, since very
different fracture specimen geometries furnished approximately the same results, as expected
theoretically.

The ratio f, which may be calculated by one of the following two expressions,

g (ao) d B 2g(o) d f.2

is called the brittleness number. For -+ 0, plasticity applies, and for 8 --- oc, LEFM
applies. For 0 < 0.1 it is possible to use plasticity as an approximation, and for 0 > 10
it is possible to use LEFM. For the intermediate 6-values, nonlinear fracture mechanics
must be used. However, if the transitional size do is determined, an approximate prediction
of maximum load can be obtained by interpolating between the solutions of plasticity and
LEFM according to Eq. 1. This should be useful for design; proposals to modify the existing
design formulas for diagonal shear failure of beams (without or with stirrups, unprestressed
or prestressed), punching shear failure of slabs, torsional failure of beams, pullout failures of
bars and of studded anchors have been made and verified by extensive tests [14-22].

Based on size effect measurements, other basic nonlinear fracture characteristics can also
be obtained. The critical crack-tip opening displacement may be determined as

6C= 1  ,r_7  with KI= (6)

145



Furthermore, the R-curve (resistance curve) for the specimen or structure can be calculated
as R¢c) = Gf '(a,) ,c with _ = (_o) _(__1, +

= g(o) ci c: g(c0-" g'(ai) I +,&oJ (7)

in which a is a dummy parameter representing the relative crack length for structure size
for which R(c) corresponds to the maximum load (Fig.2). Choosing various values of al,
the values of R (critical G-value required for further crack growth) and c can be calculated
from Eq.7, and thus the R(c)-curve defined parametrically. This curve is by definition size
independent but depends on the geometry of the structure. For very different geometries,
very different R-curves can be obtained. Eq.7 defines the master R-curve for an infinitely
large specimen. For a specimen of finite size, the R-curve given by Eq.7 is followed only
up to the maximum load P., and after that the actual R-curve is constant (horizontal),
with the R-value equal to that attained at the peak load [23, 24]. The reason is that for
prepeak loading the fracture process zone grows in size while remaining attached to the
crack or notch tip (provided structures with g'(ao) > 0 are considered), whereas in post-
peak softening the fracture process zone gets detached from the notch tip and travels ahead
retaining approximately a constant size.

Using the equivalent LEFM approach, the curve of load or reaction P versus the load-
point displacement u may be calculated from the equations

U = P (Co + 2 j g(,')da,), P = b-R(c), (S)
bE 09(ak)

in which Co is the compliance for a specimen without any crack. Choosing various values of
c, with a = (ao + c)/d, the values of P and u can be evaluated from Eq.8, defining the load-
deflection curve parametrically.

Eq.8 provided a strong verification of the size effect method of determining fracture
properties. The material fracture parameters were determined solely from the maximum
loads measured on geometrically similar rock fracture specimens of very different sizes [23];
then the R-curve was calculated from Eq.7, and from that the load-deflection diagram shown
in Fig.3 from Eq.S was computed. The results showed excellent agreement with the measured
load deflection curve (Fig.3). Similar agreement has been obtained for concrete [13].

2.2. STATISTICAL GENERALIZATION AND WEIBULL'S EFFECT

The fact that Eq.1 or Eq.3 can be algebraically rearranged to a linear regression plot of
Y = rN versus X = j makes it possible to obtain easily the statistics of the material fracture
parameters. The coefficients of variation of fracture toughness (defined for a specimen of
infinite size), the effective length of the fracture process zone, and the fracture energy may
be approximately obtained as

1
2 I- (W2 - W)1/,w , = (4wK.,, + WE4)1/12 (9)

in which CA and wc are the coefficients of variation of the aforementioned slope and of the
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Y-intercept of the linear regression plot, and wE is the coefficient of variation of the elastic
modulus of concrete [11].

Eq.9 takes care only of the uncertainty of the material parameter values in the foregoing
deterministic model. More realistically, one should note that the failure process in itself is
stochastic, and the simplest vehicle to take that into account is Weibull's reasoning. However,
the classical Weibull-type formulations do not apply to concrete structures because they
exhibit stable growth of cracking with significant stress redistributions prior to maximum
load. Good results, however, can be obtained with a nonlocal generalization of Weibull
approach 125), in which the survival probability of the structure is calculated as the joint
probability of survival of all the material elements based on the stress distribution just prior
to failure, in which the material failure probability is determined from Weibull distribution
using the nonlocal stress average, &;

-In(1 - PI) = V E" ) ' a,() = /,(l - x)a,(A)dV(s) (10)

in which P = failure probability of the structure, ai = principal stresses (i = 1,2,3), V =
volume of the structure, V0 = volume of a small representative volume of the material, ., j =
coordinate vectors, a(A- x) = given weighting function of a nonlocal material model (based
on characteristic length 1); and m, ao = Weibull modulus and scale parameter determined
by fitting Weibull distribution to direct tensile test data (assuming a zero Weibull thresh-
old). It has recently been found 125] that the nonlocal Weibull concept leads, under certain
approximations, to the following generalization of the size effect law (Fig.4).

6v=B f.(02n" + p)-12 (1

in which the overbar denotes the mean nominal strength, aow; and n = 2 or 3 for two-
or three-dimensional similarity. For concrete, typically m = 12. For large structure sizes,
Eq.11 aproaches LEFM, same as Eq.1. For small structure sizes, # -" 0, Eq.11 asyptotically
approaches the classical Weibull size effect, aN = fi-"/n, which gives a rather weak size effect,
&,N = ,-1/6 for two-dimensional similarity. Thus, Eq.11 represents a smooth transition from
the classical Weibull size effect to LEFM. Eq.1l has been shown to agree with the data for
concrete somewhat better than Eq.1, but the difference is rather small except when dealing
with very small structure sizes. The formulation in Eq.2-7 can be generalized in accordance
with Eq.11.

2.3. SIZE DEPENDENCE OF FRACTURE ENERGY OBTAINED BY CURRENT RILEM
METHOD

The fact that the size effect method based on the maximum load yields excellent predic-
tions of the load-deflection curves, in good agreement with measurements, makes it possible
to exploit this formulation for examining the fracture energy determined from the area un-
der the load-deflection curve, which represents the work-of-fracture method proposed for
ceramics by Nakayama [26], and by Tattersall and Tappin [27], and introduced for concrete
by [28,29]. The work of fracture has been calculated for concrete specimens on the basis
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of the load-deflection curve obtained from the R-curve (Eqs.7 and 8), keeping the R-value
constant for the post-peak softening (area in Fig.2c). This calculation indicates a size effect
on the value of the fracture energy GR, due to the fact that the peak load occurs at different
points of the R-curve for specimens of different sizes. The calculation results are shown in
Fig.2d; note that the size dependence of GR is quite strong, in fact stronger than that of
the R-curve, although not as strong as that of the apparent fracture energy G, determined
by LEFM method. This agrees with the conclusions of Planas and Elices [41, who showed
that the fracture energy measurements according to the RILEM standard, which is based on
the work-of- fracture method, must be extrapolated to a specimen of infinite size in order to
obtain consistent (size independent) results.

2.4. NONLOCAL DAMAGE MODELS

In finite element analysis of damage and cracking in concrete structures, the size effect
has long been neglected. Unfortunately, most of the existing models are based on plasticity
or its modifications and exhibit no size effect, which is unacceptable for concrete structures.
Modeling of the size effect should be accepted as the basic criterion for correctness of a finite
element code. The only way to achieve a correct size effect in agreement with Eq.1 is to either
use some type of a nonlinear fracture model for a line crack with cohesive crack-bridging
zor.-, or a nonlocal form of a finite element code for distributed damage of smeared cracking.
The latter approach is more versatile and perhaps somewhat more realistic due to the diffuse
nature of cracking in reinforced concrete structures. A nonlocal generalization of the classical
smeared cracking formulation has been introduced in [30], and a good agreement with size
effect data and with Eq.1 has been demonstrated. A more realistic constitutive flaw for the
evolution of damage or cracking in the fracture process zone is the microplane model, in
which the material properties are characterized separately on planes of various orientation
in the material. This model has recently been generalized to a nonlocal form, and it was
again demonstrated that such a generalization agrees well with size effect fracture data as
well as Eq.1 (Fig.5); see [31].

2.5. MICROMECHANICS MODELING

It is very difficult to identify the strain-softening constitutive relations for the fracture
process zone on the basis of measurements alone. Therefore, micromechanics modeling could
be of great help. Micromechanics models need to represent systems of microcracks that are
observed experimentally. Therefore, initial studies of micromechanics of fracture of concrete
concentrated on the analysis of an array of cracks in a homogeneous elastic matrix. Some
observed features could be reproduced with such models, particularly the strain-softening
behavior. This was, for example, demonstrated for an array of parallel microcracks spaced
on a cubic lattice and subjected to a microscopic uniaxial stress field. Application of the
homogenization conditions to such a crack array also showed that the corresponding macro-
scopic smoothing continuum is nonlocal, and of the nonlocal damage type. Stability analysis
of the interacting crack systems, however, indicated that such a mode! is unrealistic because
only one of the cracks can grow in a stable manner, which is of course not what is seen in
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experiments. The reason for this discrepancy no doubt consists in the micro-inhomogeneity
of the material, especially the presence of harder inclusions.

Interaction of cracks and inclusions in an elastic matrix has been studied in [32], using
a Green's function approach (Fig.6). Approximate solutions have been obtained for a crack
interacting with many inclusions, for various geometric configurations. The solution was used
to obtain an apparent R-curve of a microcrack in a smoothed homogeneous matrix such that
its growth is the same as the growth of the actual crack interacting with inclusions. It was
found that in many situations the apparent R-curve is rising, which has a stabilizing effect
on the system of cracks. The apparent rising R-curve can stabilize a system of many cracks,
such that many cracks can grow simultaneously, in agreement with observations.

As a conclusion from this study, it appears that a study of crack arrays in a homogenous
continuum is in general insufficient, and the presence of inhomogeneities representing the
aggregate pieces must be considered simultaneously in the analysis. It should be also noted
that this result is simular to that of Gao and Rice [331, who however considered only the
case when the elastic moduli of matrix and inclusions differ very little, using perturbation
method. A special problem of this type has also been solved by Mori et al. [34].

2.6. SIZE EFFECT CORRECTION TO PARIS LAW FOR FATIGUE FRACTURE

Under repeated loading, cracks tend to grow, which is described by the well-known Paris
law [35, 36]. Applicability of this law to fatigue crack growth in concrete has been verified by
Swartz et al. [37]. Since Paris law describes the crack growth as a function of the amplitude
of the stress intensity factor, a quettion arises with respect to the size effect. In monotonic
loading, the stress intensity factor does not provide sufficient characterization of fracture
when different sizes are considered, as is known from the previously discussed size effect
law. The same phenomenon must be expected for cyclic fracture, especially since fracture
under monotonic loading can be regarded as a limiting case of fracture under cyclic loading.
Recent fatigue fracture experiments on notched concrete beams at Northwestern University
[38] have shown that the fatigue crack growth in geometrically similar specimens of different
sizes can be described by the following law:

-A ( - C )A ' K1, = Kif 1 (12)

in which A'I, fracture toughness for an infinitely large specimen, AKI = amplitude of the
stress intensity factor, Aa/AN = crack length extension per cycle; and C, n = constants.
For 0 -- o, this equation reduces to the well-known Paris law. For normal size concrete
specimens, however, the deviations from Paris law are quite significant. This is revealed by
the experimental results in Fig.7 for three different sizes in the ratio 1:2:4. In this plot, the
Paris law gives an inclined strait, 'ine of slope n, but it is seen from Fig.7 that for each
size one obtains a different straight line. The solid straight lines represent Eq.12.

2.7. FRACTURE OF HIGH STRENGTH CONCRETE

It has already been well established that high strength concrete is more brittle than
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normal strength concrete. This question has been investigated at Northwestern University
using the size effect method of determining material fracture properties [13]. Concrete of
28-day standard compression strength 12,000 psi, typical for high-rise construction in the
Chicago area, has been used. The results are summarized in Fig.8, which shows the relative
values of various material properties compared to the normal strength concrete, particularly
the compression strength f, modulus of rupture f,, Young's modulus E, fracture toughness
KI, and fracture energy Gf (both for an infinitely large specimen), effective length of the
fracture process zone cf, and Irwin's characteristic size of the nonlinear zone t0. Whereas the
compression strength is 2.6-times higher than that of normal-strength concrete, the fracture
toughness is increased only by about 25%, fracture energy by about 15%, and the effective
lengths of the fracture process zone is decreased 2.5 times and the characteristic size of the
nonlinear zone is decreased approximately 5-times. Consequently, the brittleness number of
the high strength concrete structure is approximately 2.5-times higher than the brittleness
of an identical structure made of normal-strength concrete. This aspect of high strength
concrete is unfavorable for design and requires special attention.

3. Effect of Rate of Loading and Creep

Fracture of rocks as well as ceramics is known to exhibit a significant sensitivity to the
rate of loading. For concrete, the influence of the rate of loading on fracture propagation is
even more pronounced and is further compounded by viscoelasticity of the material in the
entire structure. To calculate the response of a structure, as well as to be able to evaluate
laboratory measurements, the most important is the detenation of the load or reaction
P as a function of the load-point displace-ment u and t;me t for a prescribed loading regime-
The following simple method has been for ..ulated for this purpose.

We begin by rewriting Eq.8 for a structure with rate-independent fracture as follows

U = C(a)P, C(a) = Co + 2P = k(- ) (13)

in which C(a) is the secant compliance of the structure at growing crack length a, Co is

the elastic compliance of the same structure without crack, KIR(c) = ER(c) = R-curve
of fracture toughness (material property), c = a - a0 = crack extension from the notch
or initial crack of length a0 , d = characteristic dimension of the structure, a = a/d b =

structure thickness, p(a) = f g(a')da', k(&) = V -' .When both the load and the crack

length are varying (and 6 = da/dt > 0) are varying, differentiation of Eq.12 yields
pdC(a).

ii = C(a)J + P aa (14)

a = 4'(a)P (15)

in which we introduce the notation
1 [ K'jR(c )  IR(c) k' )]- (16)

= bv k(a) k(a) 2  d
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Materials which under a constant fast rate of loading follow linear elastic fracture mechanics
exhibit crack growth that approximately obeys the following equation

4= K, I(P) nexp- T(17)
a=KC(Kk(:P [U (I~ 1I)] (7

in which Kz = stress intensity factor, U = activation energy of crack growth, Ro = gas
constant, T = absolute temperature, To = reference temperature, and ice, n = empirical
constants. The applicability of this well-known equation to concrete has been verified in
[39]. For materials which under constant fast rate of loading exhibit nonlinear fracture
properties, the proper generalization of Eq.16 is as follows:

K,= K (j) nexp[ (-) (18)

in which
/IR(c) = KIR(C) if P > 0; otherwise AR(C) = KIR(Cp) (19)

When the loading rate is approximately constant and temperature is constant, Eq.17 auto-
matically yields the size effect in agreement with the size effect law.

Outside the fracture process zone, concrete behaves as a linearly viscoelastic material
described by the stress-strain relation

It
c(t) = J(t, t')da(t') (20)

assuming that th " .. '- q strain eh and the delayed th,-rmal expansion are zero; herp
f. a = strain and s Jt, t') - romp . .iunction for creep, representing the strain at at
t caused by a unit un.axial stress app, - age t'. Based on Eq.20, the elastic-viscoelastic
analogy yields for tht load-displacement relation the following Volterra integral equation

U(t) = j J(t, t')C[a(t'))dP(t') (21)

in which C(a) = EC(a) = compliance of the structure for a unit value of the elastic modulus
(i.e.. for E = 1). This equation results by noting that the delayed viscoelastic displacement
at time t caused by load increment dP(t') occuring at time t' on homogeneous a structure
with crack length a(t') is J(t, t')C[a/(t')dP(t'). Differentiating Eq.21, one obtains

q= Ca(t)]P(t) + i1(t) (22)

in which
is (t) = j(t, t')C[a(t')]dP(t') (23)

Here J(t. t') = aJ(t, t')/at = material compliance rate.
The problem of solving the response of a viscoelastic structure with rate-dependent crack

growth under a given controlled displacement history u(t) consists of solving functions a(t)
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and P(t) from Eq.17 and 21 (with Eq.22). This represents a system of two integro-differential
equations of Volterra type. The initial conditions are a = a0 and P = 0 at t = to. The
problem can be solved by finite difference approximations in small time steps At = t,+l - tj
where j = 1,2,3,...= subscripts for chosen discrete times. With the notation denote

K Pk(*) U - * the finite difference approximations of Eqs.17, 21 andf(P~a = b,% d'4z,(e) ex----

22 are as follows
Aa = f(Pa)At + ,(a)AP (24)

AU = PXaa) Aa + C(a)AP + Au", (25)

Ii

Au" = ,[J(ti+i,t+j) - J(tj, tj+)]C[a(tj+i)]APi (26)
.=1

in which A denotes the increments over the time step At. In each time step, the solution
algorithm may proceed as follows:

I. Loop on iterations.

2. For the first iteration, use the P- and a -values from the end of the previous step,
and for the next iterations, use the P and a values for the midstep as determined
from the previous iteration of this step. Evaluate f(P,a),C(a), '(a)and 0(a). Then
evaluate dC(a)/da t. AC/Aa based on the final a-value in the previous step, for the
first iteration, or on the average value of a as determined in the previous iteration of
this step. Then calculate Au, from the load increments and crack lengths at previous
discrete times and time steps, using Eq.27.

3. Solve AP and Aa from Eqs. 25 and 26, which represent a system of two linear algebraic
equations. Check for convergence according to the given tolerance. If the tolerance
criterion is not met, return to step 2 above and start the next iteration. Otherwise
begin the first iteration of the next time step.

The most important simplification in the preceding solution is the approximation of a
crack with a finite fracture process zone and cohesive crack bridging zone by an equivalent
sharp crack which supposedly gives about the same overall response of the specimen. This
is no doubt adequate for a sufficiently large structure but inadequate for a sufficiently small
structure. For smaller structures it is necessary to solve the problem taking at least into
account a crack bridging zone of a finite length, which requires postulating a relationship
between the crack bridging stress and the crack opening displacement as a material property.
This relationship involves both instantaneous response and crack bridging creep. A solution
of this type has recently been formulated.

The rate-of-loading effect on fracture has been studied experimentally by the size effect
method. The most interesting result [40] is that the effective length of the fracture process
zone decreases as the loading rat,! increases, and thus the response is getting more brittle,
closer to LEFM. This is seen in Fig.9 which shows that, for specimens of 3 sizes (1:2:4), for
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max aON-points shift to the right (i.e., toward a higher brittleness fi) as the time to reach th.
peak load increases (tests at constant displacements rates). Measurements are continuing.

4. Closing Remarks

As a final comment on the rate and creep effects, many concrete structures, (for example
dams), develop large cracks over a long period of time. Taking the rate effects in fracture
growth as well as material creep (and shrinkage) farther away from the fracture process zone
into account is essential for realistic predictions. To present the mathematical groundwork
representing perhaps the simplest possible formulation has been one goal of the present
workshop contribution. The other goal has been to review a host of recent developments
which all exploit in some way a knowledge of the size effect due to fracture This effect itself
is a consequence of the nonlocal character of damage in this type of materials.
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Abstract
Laboratory testing of rocks subjected to differential compression have revealed many
different mechanisms for extensile crack growth, including pore crushing, sliding along
pre-existing cracks, elastic mismatch between grains, dislocation movement, and hertzian
contact. Micromechanical models based on fracture mechanics have been developed for
these different mechanisms by many different researchers. In this paper, the K1 solutions
for these micromechanical models are reviewed. Because of the similarity in rock behavior
uder compression in a wide range of rock types, it is not surprising that the
micromechanical models discussed in the previous sections have many similarities. This
may explain the success of models based on certain micromechanisms in spite of the lack of
evidence for these mechanisms in microscopic studies. Based on these similarities, a
generic micromechanical model is proposed that in some way takes into account all of the
above phenomena. It is demonstrated how the KI solutions from the micromechanical
models can be used to derive nonlinear stress-strain curves that exhibit strain-hardening and
strain-softening, dilatation, 02 sensitivity, and rate dependence. By using subcritical crack
growth, transient and tertiary creep behavior can also be predicted. Also, it is shown how
these micromechanical models can form the basis for continuum damage models using the

finite element method.
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1 Introduction

Rock is a very heterogeneous material, containing different and often anisotropic crystals,

as well as structural weaknesses at all scales. These weaknesses include grain boundaries,

pores, and cracks on the small scale, and joints, faults, and bedding planes on the larger

scale. When rock is subjected to differential compressive stresses, extensile, opening-

mode microcracks grow from these flaws and degrade the properties of the rock. Our

understanding of the fundamental mechanisms involved in the micromechanics of brittle

and semi-brittle rock deformation has increased greatly in the past decade, due to the many

microscopic studies that have been carried out on rocks subjected to compressive stresses

in the laboratory. It has been found, for instance, that microcrack growth occurs

preferentially in the direction of the maximum principal stress, and this results in stress-

induced anisotropic rock properties (Wong, 1985; Fredrich et al., 1989; Zheng, 1989). As

more cracks grow and the cracks increase in length, crack interaction becomes important,

and cracks can coalesce to form large scale splitting or shear fractures. The growth of

cracks has been shown to be closely associated with the macroscopic constitutive behavior

of the rock. For instance, the initial, stable growth of microcracks is associated with strain-

hardening stress-strain behavior, and the interaction and coalescence of cracks is associated

with unstable strain-softening stress-strain behavior (Hallbauer et al., 1973). Both strain-

hardening and strain-softening behavior exhibit dilatation as a result of extensile crack

growth. Also, experiments have shown that for tests conducted at higher confining

pressures, the average length of the cracks is reduced, promoting the transition from brittle

to semi-brittle behavior (Fredrich et al., 1989; Zheng, 1989). Microstructural parameters

such as grain size, porosity, and initial crack density play an important role in rock

deformation, and recent experimental studies have helped elucidate their effects (Zhang et

al., 1989; Fredrich et al., 1989). An example of microcrack growth in Indiana limestone is

presented in Figure 1, revealing several of the different mechanisms that can cause crack

growth under compression (from Zheng, 1989).

Another aspect of rock deformation and failure of great importance is the time and rate-

dependence of rock deformation. Recent experimental studies have shown that both time

and rate dependent behavior in brittle rocks can be the result of rate-controlled processes

acting at the tips of cracks where stress concentrations exist (Sano et al., 1981; Carter et

al., 1981; Atkinson, 1984). This time-dependent crack growth occurs at values of the

stress intensity factor below the fracture toughness of the material, and is referred to as

sub-critical crack growth. Subcritical crack growth is the result of several mechanisms that

168



can occur simultaneously, including stress corrosion, diffusion, dissolution, ion exchange,

and microplasticity (Atkinson, 1984).

Fracture mechanics theory (i.e., Lawn and Wilshaw, 1975) is now routinely being applied

to many different aspects of the micromechanics of rock deformation and failure. Fracture

mechanics models have been developed to analyse crack growth under compressive

stresses due to grain crushing (Zhang et al., 1989), sliding along pre-existing cracks

(Nemat-Nasser and Horii, 1982; Steif, 1984; Ashby and Hallum, 1986; Horii and Nemat-
Nasser, 1986; Kemeny and Cook, 1987a,b), stress concentrations around pores (Sarnmis

and Ashby, 1986), elastic mismatch between grains (Dey and Wang, 1981), dislocation
movement (Krajcinovic, 1989), and combinations of these mechanisms (Costin, 1985).

One of the important aspects of these models is that even though they are based on linear

elastic fracture mechanics (LEFM), nonlinear stress-strain behavior can be predicted due to
the growth of the cracks in an otherwise linear-elastic solid. For instance, the models
predict that the initial growth of cracks results in strain-hardening stress-strain behavior.

Also, the models that include crack interaction show that crack interaction can cause a

transition from strain-hardening to strain-softening stress-strain behavior. Several fracture

mechanics models have been able to predict the transition from axial splitting to shear

faulting as the confining pressure is increased (Horii and Nemat-Nasser, 1986; Kemeny
and Cook, 1987a). Also, a few of the models have implemented a crack growth criterion

based on subcritical crack growth, and these models are able to predict the creep and rate

dependence in rock (Costin, 1985; Kemeny, 1990).

The experiments and theoretical models described above are in general based on the

standard triaxial test consisting of an axial stress and a confining pressure. Ideally, under
these boundary conditions the stress state is constant throughout the body, and a rotation of

the principal stresses does not occur during loading. In actual field situation where rock

deformation and failure are occurring in a rock mass, stress gradients occur due to the

complicated boundary conditions imposed. These stress gradients play an important role in

the fracture systems that develop, and in rock mass stability. Experimental studies have
been conducted looking at the effects of stress gradients on rock deformation and fracture

formation (Guenot, 1989; Gough and Bell, 1982; Haimson and Herrick, 1985; Santerelli,

1987; Ewy, 1989). Fracture mechanics models based on the micromechanics of crack

growth, interaction, and coalescence are now being developed that can take into account

complicated boundary value problems with stress gradients. These models are formulated

by implementing micromechanical models into an elastic finite element code. In each of the
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elements, the micromechanical models are utilized to calculate the effects of crack growth,

interaction, and coalescence, and the stress gradient effects are accounted for by the finite

element calculations. Examples of finite element damage models that have been developed

in this way are given in Costin and Stone (1987), Krajcinovic (1989), and Kemeny and

Tang (1990).

This paper discusses the use of fracture mechanics in modelling the deformation and failure

of rocks subjected to differential compressive stresses. In section 2 that follows, linear

elastic fracture mechanics theory is briefly reviewed. Then, in section 3, some of the

micromechanical models that have been developed to model the different mechanisms for

crack growth under compression are reviewed. In section 4, it is shown how these models

can used to develop nonlinear constitutive relations for rock. This includes

micromechanical models for nonlinear constitutive relations based on the rate-independent

fracture toughness, rate dependent models based on subcritical crack growth, and creep due

to subcritical crack growth. In section 5, these micromechanical models are implemented

into an elastic finite element code, to look at the effects of microcrack growth on

complicated boundary value problems. As an example, we look at borehole breakout using

both the rate-independent and subcritical crack growth models.

2 Fracture Mechanics Preliminaries

The analyses in this paper are limited to two-dimensional, linear-elastic bodies subjected to

compressive principal stresses 0y1 and 02, and containing simple configurations of cracks.

In this section, some of the important aspects of linear elastic fracture mechanics are briefly

discussed. The discussion is limited to those topics that will be used in later sections of

this paper. For a complete discussion of linear elastic fracture mechanics theory, see

Liebowitz (1968), Lawn and Wilshaw (1975), or others.

Following the usual notation in linear elastic fracture mechanics, three types of stress

intensity factors, K1, KII, K111, are distinguished, which relate to the three types of crack

displacements: mode I (opening), mode II (sliding), and mode HI (tearing). The stresses

near the crack tip then have the following form (Lawn and Wilshaw, 1975):
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where r is the radial distance from the crack tip, 0 is the angle measured from the plane of

the crack, Q takes on the values 1, I, and I for the three cracking modes, and f(0) are

smooth functions of 0. The stress intensity factors take into account the crack geometry

and boundary conditions, and can be extremely simple for simple crack configurations

(e.g., Rooke and Cartwright, 1976). For instance, for a single flat crack of length 21

oriented along the x axis in an infinite body subjected to normal crack face tractions a(x),

the mode I stress intensity factor at the tip x=l is given by (Cherepanov, 1979):

T7T

Much of the usefulness of the stress intensity factors for rock deformation lies in their

relationship to the strain energy of the body that contains the cracks. The energy release

rate, G, is defined as:

where Ue is the elastic strain energy of the solid that contains the crack, and 21 is the crack

length. The relationship between G and the stress intensity factors is given by:

where E' = E for plane stress and E' = E/(1 - v2) for plane strain. By integrating 2G from

zero to the given crack length, the additional strain energy due to the crack, Ue, can be

calculated.

A convenient method for calculating the displacements of an elastic body containing cracks

is Castigliano's theorem (Sokolnikoff, 1956). From Castigliano's theorem tile
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displacement xi that occurs under a load Pi when a linear elastic body is subjected to loads

PI, P2, ... Pn is given by:

The displacements due to the uncracked body are already known for the simple

configurations considered in this paper. Equations (3) to (5) give the procedure for

calculating the additional displacements due to the cracks once the stress intensity factor

solutions are known.

Two criteria for crack growth will be considered in this paper. The first crack growth

criterion (rate-independent) is based on the work of Griffith (1920) and others, and states

that crack growth occurs when:

where KIC is the fracture toughness. Assuming that KIC does not change with crack

growth, the criterion for unstable crack growth is:

K> _27

A second crack growth criterion (rate-dependent) is based on crack growth that occurs

below KIC and is referred to as subcritical crack growth. A common empirical equation

used to describe subcritical crack growth is based on the power law formulation of

Charles(1958), and in given by:

where A and n are material constants.
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Micromechanical Models for Crack Growth Under Compression

As discussed in the introduction, microcrack growth under compression occurs by many

different mechanisms, and in the past few years, mechanical models have been developed

for many of these mechanisms. In this section we review the stress intensity factor

solutions for several of these micromechanical models. The discussion is limited to the

axial growth of extensile cracks, i.e., the formation of shear bands or faults is not
considered. It is found that the micromechanical models for crack growth under

compression have many similarities, and at the end of this section we introduce a generic
model for crack growth under compression that encompasses all the models. The stress

intensity factor solutions discussed here will be used in section 3 to derive nonlinear

constituive relations.

Cylindrical Pore Model

A two-dimensional cylindrical pore is subjected to maximum and minimum principal
stresses ol and 02, respectively, as shown in Figure 2. For a1 > 302, tension will occur at
the boundary of the pore in the direction of the maximum principal stress. As oy -3T2

increases, eventually a pair of tensile stresses will initiate and grow in the direction of oY.

When the length of the tensile crack, 1, is small compared with the radius of the pore, R,

i.e., /<<R. a small-crack approximation to the stress intensity factor is appropriate, given

by:

This solution is based on the edge crack subjected to a uniform tensile far field stress

(Rooke and Cartwright, 1976). Notice that KI for this configuration increases with
increasing crack length, and for a fixed ol, equation (7) predicts that the crack will grow in

an unstable manner.

When the tensile cracks are long in relation to the size of the pore, i.e., R<<I, the stress
intensity factor can be approximated by a straight crack oriented in the direction of 0l with

a set of point forces at the center of the crack. The stress intensity factor for this

configuration is given by:
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where C is a constant. Note that this solution takes into account the opening force due to
l and the closing effect that 02 has on the long crack of length 21. Also note that from

equation (7), this solution predicts stable crack growth (KI decreases for increasing I for
fixed al and 02. Thus equations (9) and (10) together predict that the tensile cracks will

initially grow in an unstable fashion, and stabilize at some crack length.

In order to determine the length of crack at which the crack stabilizes, a solution is needed

that is valid at all crack lengths. A stress intensity factor solution that encompasses both the

small and large crack behavior is given by Sammis and Ashby (1986):

The KI vs. I behavior for this solution is shown in Figure 3, for various values of o2/l.

KI initially increases with increasing 1, reaches a maximum, and thereafter decreases with

increasing 1. The maximum represents the transition from stable to unstable crack growth.

Figure 4 shows that the maximum occurs at a length <R, and decreases with increasing

02/01.

Sliding Crack Model

Consider an initial straight crack of length 21o, at an angle P3 to the principal stresses 01 and

02, as shown in Figure 4. The shear stress along the crack over and above that due to

friction (assuming a linear coefficient of friction, i) is given by:
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The stress intensity factors for the initial configuration are given by:

Assuming that crack growth will occur in the direction such that aee at the crack tip is

maximized, crack growth will occur at an angle of about 700 from the plane of the crack.

These out of plane cracks are referred to as wing cracks. When the wing cracks are small,

i.e., I<<1, the stress intensity factors are given by (Cotterell and Rice, 1980):

K:-V2 + S I' ) -C'~'1~

This solution cannot be used for stability analysis, since aKI/Dl is identically equal to zero.

As the crack grows longer, it grows in the direction of a1 , and the stress intensity factors at

the tip of the wing cracks becomes predominantly KI. A long crack approximation for the

sliding crack for I>>1o is given by (Kemeny and Cook, 1987a):

_-- ____Z -, - I;-

The long crack approximation to the sliding crack is similar to the long crack approximation

for the cylindrical pore model, when lo = R, where R is the radius of the pore. Compared

with the Sammis and Ashby approximation to the pore model (equation 11), KI in equation

(15) above decreases much less rapidly.

One approximation to the sliding crack valid at all crack lengths is given by Horii and
Nemat-Nasser (1986). This model considers an initial crack length 21o at angle 0 with
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straight wing cracks of length I which are at an angle a from the direction of the initial

crack, where ax varies with the length of the wing cracks:

2 LJ

where 1" 0.271o. The stress intensity factor for a given wing crack length is given by the
value of a that maximizes K1. This model predicts stable crack growth for 02

compressive, but shows a transition to unstable crack growth when 02 is only slightly

tensile (Horii and Nemat-Nasser, 1986).

Elastic Mismatch Model

Consider a body containing two materials (or one material with a change in anisotropy
orientation) and subjected to principal stresses cl and ;2, as shown in Figure 5. In two

dimensions, each material can be described by a compressibility matrix, as given by:

"2 i'7

where, for instance, S2 1 gives the strain in the 2 direction due to a stress 01. The Sij can,

for instance, take into account the strong anisotropy that occurs within individual grains.

For 01>02, differential expansion will occur in the 2 direction, and a tensile stress will

develop at the interface in the material with the smaller lateral expansion. For a small crack

in this material at the interface, the stress intensity factor can be approximated by the edge

crack with point forces P at the edge (Rooke and Cartwright, 1976):
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Dey and Wang (1981) give an approximate solution for the point force P in terms of the S
matrix and the width of the body, d:

where the superscript indicates material 1 or 2. Under a uniaxial stress (;2 = 0) and for a

large contrast in compressibility between materials 1 and 2, this reduces to:

7- a

If we take d to be the grain size, then this result is very similar to the results for the long-
crack approximations to the pore and sliding crack models when d/2 = R = 10. One
drawback with this model is that the growth of the crack will significantly reduce the
compressibility of material 1, essentially shutting down all crack growth when the
compressibility reduces to that of material 2 (see Dey and Wang, 1980).

Dislocation Pile-up Model
When a solid is stressed beyond its yield point, dislocations will be created, giving rise to

plastic slip. The yield point for different minerals can differ by orders of magnitude,
causing grain boundaries to become barriers to dislocation movement. At such a barrier, a
dislocation pile-up can occur. As the strength of the pile-up increases, a tensile crack can
develop at the edge of the pile-up, referred to as a Zener-Stroh crack.

Consider a slip plane subjected to a resolved shear stress rr, as shown in Figure 6. This
stress has to exceed the lattice friction stress tf before the dislocations can move. If there

are n edge dislocations of Burgers vector magnitude b in a pile-up of length L, the driving
stress 'r* is given by:

C. "= "11
L 7( -
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The stress distribution due to the pile-up at a distance x and angle 0 is given by

(Krajcinovic, 1989):

6 i Ls,--- .z

Using the stress distribution in equation (22), and using the formula for KI for a variable

stress as given in (2), this gives:

Note that this solution has the same form as the stress intensity factor for the sliding crack

model given in equation (15).

Herztian Crack Model

Consider the simple model of two spheres of radius R in contact and under a compressive

force P. Using Herztian contact theory (e.g., Johnson, 1985), the pressure distribution

along the contacting portions of the spheres is given by:

where a is the radius of contact given by:

and Po is the maximum pressure at the center of the circle of contact given by:
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At the edge of the contact area, a tensile stress 0 r exists, the maximum value of which is

given by:

Based on this tension, the stress intensity factor for a small crack in this tension region is

given by (Zhang et al., 1989):

2 ,"- ?

This model predicts unstable crack growth and is only valid for 1<<a. A tensile stress will

also develop in the sphere similar to that in a Brazilian test (Steinberg and Rosenthal,

1952). A small flaw in the center of the sphere will be subjected to a mode I stress
intensity factor which for a two dimensional disk of radius R can be approximated by

(Rooke and Cartwright, 1976):

Again this solution predicts unstable crack growth.

Because of the similarity in rock behavior under compression in a wide range of rock

types, it is not surprising that the micromechanical models discussed in the previous

sections have many similarities. This may explain the success of certain models such as the
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sliding crack and pore models, in spite of the lack .of evidence for these models in

microscopic studies. The similarities in behavior between the different models include:

1. Crack growth predominantly in the 01 direction.

2. KI proportional to a distance parameter such as pore size, grain size, initial crack length, etc.

3. Crack growth unstable when the crack length on the order of the small parameter.

4. Crack growth stable when the crack length is large compared with the small parameter.
5. KI very sensitive to C2.

6. KI linearly proportional to al - CcY2, where C is a constant.

Because of these similarities, is seems appropriate to develop a 'generic' micromechanical

model that in some way takes into account all of the above phenomena. Here a generic
model is proposed, which consists of a crack of length 21 oriented in the direction of 0l,

and subjected to a tensile stress co over a region of length 2a, as shown in Figure 7. The

length of this tensile region remains fixed as the crack grows. Initially the crack length 21

can be smaller than the length 2a, and for this case the behavior should be described by the

small-crack approximations. As the crack grows and becomes long compared with a, the

model should behave like the long-crack approximations. Based on item 6 above, we take
oo to be linearly proportional to a1 - Ca2, i.e.:

where C1 and C2 are constants. A closed form solution for KI for this configuration can be

derived from the Green's function solution given in equation (2). The stress distribution is

given by:

Thus KI for this configuration is given by:

=

-4
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Note we have added the effect of 02 closing the crack. The results of this equation with C2

= 3 are shown in Figure 8, at different values of o2/ol. Figure 8 shows that initially KI
increases with increasing crack length, and starts to decrease as soon as 1 >a. Thus initial
unstable behavior is predicted, followed by stable crack growth for l>a. The model has
three free parameters, a, C1 and C2.

Consider a slightly more realistic configuration where the stress ao is not constant over the
region 2a but decreases linearly as shown in Figure 7. KI for this case can be calculated in

the same manner and gives:

. T, - _ _ e

The results of this equation with C2 = 3 are shown in Figure 9, at different values of 02/01.

In contrast with the results in Figure 8, the peak in the K! vs. I curves in Figure 9 decreases
with increasing oia l. This matches closely with the Sammis and Ashby (1986) model

shown in Figure 3.

Crack In in
The effects of crack interaction were not considered in any of the models described above.

In general the two extremes of crack interaction effects (in two dimensions) are collinear

interaction and parallel interaction. Simple models for the effects of collinear and parallel

crack interaction are considered here. Recall that many of the long-crack approximations
are based on a crack oriented in the direction of al and subjected to point normal forces P at

the center of the crack. Collinear crack interaction can be included by considering a

collinear array of cracks, each containing center point forces P. The stress intensity

solution for this is given by (Rooke and Cartwright, 1976):
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where b is the center-to-center distance between the cracks. This solution can form the

basis for interaction effects in the models described above. For instance, for the long-crack

approximation to the sliding crack as given in equation (15), the inclusion of crack

interaction gives:

The intensity of crack interaction is a function of i/b, which varies from lo/b initially to I

when the cracks have coalesced into a splitting fracture. Similarly, the effects of parallel

interaction can be included by considering a doubly periodic array of cracks, each

containing center point forces P. For the sliding crack model, the KI solution becomes

(Kemeny and Cook, 1987a):

___S I V

Derivation of Nonlinear Stress-Strain Curves

The KI solutions as given in the previous section can be used to derive nonlinear stress-

strain curves due to the growth of cracks under compressive stresses. Experiments have

indicated a close relationship between nonlinear constitutive rock behavior and the growth,
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interaction, and coalescence of microcracks (e.g., Hallbauer et al., 1973). In general, the
initial growth of cracks is associated with strain-hardening behavior, and the interaction and

coalescence of cracks is associated with strain-softening behavior. These results also agree

with experiments on plexiglass sheets containing slits and subjected to compressive

stresses (Horii and Nemat-Nasser, 1986). In addition to the KI solutions given in last

section, we have the choice of the crack growth criterion to use, namely:

KI = KIC crack growth criterion

or

Subcritical crack growth criterion - al/ot = A(KI) n

If the KI = KIC criterion is used, then rate-independent stress-strain curves can be derived.
If the subcritical crack growth criterion is used, then rate-dependent stress-strain curves and

creep behavior can be derived. In this section we demonstrate how these three deformation
phenomena can be derived, using first the KI solution for the long-crack approximation to

the sliding crack without crack interaction (equation 15), and secondly, using the long-

crack approximation to the sliding crack with crack interaction (equation 35). The results

show that without crack interaction, the following characteristics of rock behavior can be
modelled:

1. Strain-hardening
2. Sensitivity of stress-strain curves to 02.

3. Rate-dependence of strength

4. Transient creep behavior

With crack interaction, the following two additional characteristics of rock behavior can be

modelled:

5. Strain-softening

6. Creep Rupture

Also, it is found that using realistic material parameters, the models give an excellent match

with laboratory data.

Nonlinear Stress-Strain Curves - KI = KIC Criterion
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Consider a body of width 2w, height 2h, and unit thickness, containing a single sliding
crack, and subjected to principal stresses cyI and 02. The displacement at the boundary of

the body will consist of th# displacement of the body if the crack was not present plus the

additional displacement due to the crack. The displacement due to the body with no crack

is simply given by:

mzk

The additional displacement due to the crack can be calculated using Castigliano's theorem,
as given in equation (5), and using the KI solution for the non-interacting sliding crack as

given in equation (15). This gives:

: ~E _ _ _ _ _ _ _ _ _

where throughout the rest of this section c and s are used for cosp and sinp, respek.tively.

At this point we consider the displacement due to N non-interacting sliding cracks, which

will be N times the displacement given above. The total strain is calculated from the total

displacement (elastic plus crack displacements) and gives:

C-. _SC-4 C-

6- ( T P
where we define X as the initial crack density, given by:

V
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V is the volume which is equal to 2w x'2h for a two dimensional body of unit thickness.

For a fixed crack length, equation (39) represents a linear relationship between stress and

strain. On a plot of stress vs. strain, this represents a series of straight lines with different

slopes for different values of 1, as shown on Figure 10. These lines would be the effective
moduli for proportional loading, Y1 = k0 2 .

The crack growth criterion KI = KIC is now introduced. On each of the straight lines (i.e.,
for a given crack length 21), there will be a point on the line where the KI = KIC criterion is

met, which is given by:

This equation can be solved for cl (t* is a function of al, see equation 12), which gives

the stress at which cracking will occur along any of the straight lines on Figure 10.

Initially, the crack has a length 1o, and as the stress is increased loading will initially follow

this line. When equation (41) above is satisfied for I = lo, the crack will start to grow, and

the stress and strain values will follow the nonlinear curve defined by the locus of points

calculated from the stresses in equation (41) and the strains from equation (39). The results

of this procedure are plotted in Figure 11 for material parameters representing Westerly
granite (material properties given in Table 1), for different values of 02. Note that this

model predicts initial linear loading, followed by strain hardening. Also, the results are
very sensitive to small increases in 02.

For the case of uniaxial loading (02 = 0), a closed form solution for this nonlinear curve

can be derived by eliminating the crack length a from the two equations, which gives:

This analysis is now repeated, using the KI solution for the model with crack interaction as

given in equation (35). First the linear stress-strain behavior is calculated for a body
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containing N cracks, where collinear crack interaction is included. Using Castigliano's

theorem, the total strain is given by:

1 + -~~ __ ___7,/

Again the crack density parameter X has been used as given in equation (40). The second

equation that is needed is the crack growth criterion, given by:

Taken together, equations (43) and (44) represent the nonlinear stress-strain behavior, i.e.,

the stress-strain curve is the locus of stresses calculated from equation (44) and strains

calculated from equation (43) for crack lengths that vary from 10/b to 1. Nonlinear stress-

strain curves calculated for different values of a2 are presented in Figure 12. The material

properties used are that of Westerly Granite, as given in Table 1. Also in Figure 12, these

results are compared with experimental results from Wawersik and Brace (1971). The

model results are able to reproduce many of the features of the stress-strain behavior of

Westerly granite. This includes the initial strain-hardening due to the initial stable growth

of the wing cracks before crack interaction, and the strain-softening behavior due to crack

interaction. Also, the model predicts the large increase in strength with very small

increases in confining stress. The model predicts that ultimate failure occurs by the wing

cracks coalescing to form a single, macroscopic axial-splitting crack. The model does not

predict the transition to shear faulting that occurs at higher values of confining stress. More

sophisticated results could be produced by considering more complex crack interaction

effects.

186



Nonlinear Stress-Strain Curves - Subcritical Crack Growth Criterion

Consider a body of width 2w, height 2h, and unit thickness containing N noninteracting

sliding cracks, and subjected to uniaxial loading (a2 = 0). On the boundary of the body, a

fixed uniaxial strain rate is applied. Assuming the strain at t=O is equal to zero, this

gives:

Using the value for the stress intensity factor from equation (15), the subcritical crack

growth equation becomes:

The linear stress-strain relation for this configuration is the same as equation (39) that was

derived in the previous section (and setting 0 2 = 0). Equation (39) can be solved for al

and along with equations (45) and (46), this gives:

L LT 7C/

This nonlinear ordinary differential equation, along with the initial condition that 1= 1 at

t=0, can be solved numerically to give crack length as a function of time (I(t)). This, along

with equation (39), gives a, as a function of time:
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The strain as a function of time is given by equation (45), and the nonlinear stress-strain
curve is the plot of these a(t), E(t) pairs for different times. Some numerical results are

shown in Figure 13, using the properties of Oshima granite as given in Table 2. The

results are shown for two values of the loading rate that differ by an order of magnitude.

As shown in Figure 13, the stress-strain curve is sensitive to the loading rate. Initially, the

cracks grow at extremely small rates due to the n value of 30. and this region the results for

the two loading rates follow the same elastic slope. As the cracks start to grow at higher

rates, the case with the higher loading rate results in higher stresses, which agrees with

experimental data (Jaeger and Cook, 1979).

The analysis is now repeated, using the stress intensity factor solution that includes

collinear crack interaction (equation 35). This solution is used in the subcritical crack

growth equation, along with the linear stress-strain relation for the case of collinear crack

interaction as given in equation (43). As before, this results in a nonlinear ordinary

differential equation. Using the initial condition that 1/b = lo/b at t=0, this equation can be
integrated to give l/b(t). This along with equation (43) can be used to give al as a function

of time. These results are presented for the material properties of Oshima granite (Table 2)

in Figure 14a for four values of applied strain rate. The results are compared with the

experimental data of Sano et al. (1981) at the same strain rates in Figure 14b. The results

show several interesting features. Initially, the behavior is linear, and this is due to the

region when the cracks are growing at a very low rate. As the crack velocity increases,

strain-hardening behavior is initially predicted, followed by strain-softening behavior. The

volume strain is initially compressional, dominated by the solid matrix before the cracks

begin to grow. As the cracks grow, the volume strain becomes dilatational. The stresses at

which this occurs, and the amount of dilatation, match closely with the results of Sano et

al. (1981), as shown in Figure 14b. The results show an increase in strength with

increasing loading rate, which is in agreement with experimental results.

For the case with no crack interaction, consider the same two equations as before, i.e., the

linear stress-strain equation as given in equation (39), and the crack velocity equation as

given in equation (46). To model the creep behavior of crack growth under compression,
we now consider the boundary conditions of a constant uniaxial stress 0l. In this case,

using the initial condition that I = 1 at t--0, equation (46) can be integrated analytically to

give:

188



and the strain as a function of time becomes:

IL ... -/:-
'-IX

This can be rewritten into the form:

'

where

TV -

Equation (51) predicts transient creep and is of the exact form that is often used to describe

the transient creep in brittle rocks from experimental studies (Jaeger and Cook, 1979).

The above analysis can be repeated using the stress intensity factor solution that includes

collinear crack interaction, equation (35). When this solution is used in the subcritical

crack growth equation, it can be integrated to give l/b(t), and using equation (43), E(t). The
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results for different values of creep stress are presented in Figure 15. For small times for

all values of 01 and for all times for low values of ol, the results agree with the results with

no crack interaction, i.e., transient creep. For values of 0l close to the failure stress, a

transition from transient creep to creep rupture is seen.

Continuum Damage Modelling

The nonlinear results derived in the previous section were made under the assumption that

the principal stresses 0y1 and 02 are uniform throughout the body (no end effects or stress

gradients). Using the finite element method, these results can be extended to complicated

boundary conditions that contain stress gradients. This is accomplished by implementing

the procedures described in the previous section into an elastic fimite element code on an

element by element basis, where in each element it is assumed that the principal stresses are

uniform. Like the results in the previous section, nonlinear behavior is predicted due to

crack growth in an otherwise linearly elastic body. Also as in the previous section, two

relationships are needed, the first being the linear stress-strain relationship for each element

as a function of its crack density, and the second being a crack growth criterion. If the KI

=KIC crack growth criterion is used, then rate-independent nonlinear behavior will be

predicted. If the subcritical crack growth criterion is used, then rate-dependent nonlinear

behavior and creep will predicted. Results using both the KI =KIC and subcritical crack

growth criteria are presented in the following sections. First the issue of stress-induced

anisotropy is discussed.

Stress-Induced Anisotropy

The micromechanical models reviewed in section 2 predict that crack growth under

compression occurs primarily in the direction of 0y1. For a body that is initially isotropic,

crack growth in the direction of at will result in stress-induced anisotropic rock properties,

and this must be taken into account in the finite element calculations. In the case of an

initially isotropic body, crack growth in the direction of the maximum principal stress will

render the material transversely isotropic. The linear stress-strain relations under the

assumption of transverse isotropy are given by:

1 - K .Z _
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Note that there are five independent elastic constants, El, E2, Vl, V2, and G2. In two
dimensions, the linear stress-strain relationship can be put into the form (plain strain):: t 1
where the D matrix is given by:

where n=El/E 2 and m--G2E 2.The above formula assume that the cracks grow parallel to

the x axis. If crack growth is inclined relative to the x axis, then the D matrix can be
transformed by a matrix containing the direction cosines (Zienkiewicz and Taylor, 1989).

Using equation (52), Castigliano's theorem, and one of the KI solutions for crack growth

under compression from section 2, the five independent elastic constants for stress-induced
anisotropy can be determined. For instance, for the sliding crack model with collinear

crack interaction (equation 35), this gives:
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Finite Element Damage Model - K I..KI. Criterion

The D matrix for stress-induced anisotropy discussed above is a measure of the damage
that occurs in each of the elements due to crack growth and interaction. This damage

measure, along with the KI = KIC crack growth criterion, has been implemented into an
elastic finite element code to produce a nonlinear damage model. Details of this damage

model are presented in Kemeny and Tang (1990). Results of this model for the geometry

of a thick walled cylinder are presented in Figure 16. The thick walled cylinder is subjected

to a vertical external stress of 260 MPa and a horizontal stress of 130 MPa. The properties

assumed are that of Westerly granite given in Table 1, and the sliding crack model with

crack interaction was used. As shown in Figure 16, crack growth stabilizes with only a
minimum amount of damage occurring around the boundary of the specimen. An addition

to the model was made to account for the presence of isotropic damage in addition to the
anisotropic damage due to the growth of axial extensile cracks. This allows for the many

additional sources of damage such as the linking of axial cracks via a shear crack. The

results when isotropic damage is added are shown in Figure 17. Figure 17 shows a much

more well developed breakout shape, which agrees with the numerical results of Zheng et
al. (1989) and experimental results of Ewy (1989) and others. It is interesting to note that

damage progresses into the rock without completely failing the rock in the damage zone.
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For instance, at the boundary of the hole, the damage variable, I/b, reaches a value of 0.508

(l/b=1 is complete failure). This agrees with experimental results (e.g., Ewy, 1989).

Finite Element Damage Model - Subcritical Crack Growth Criterion

Here the subcritical crack growth criterion is used as the basis for a finite element damage

model. Details are given in Kemeny and Tang (1990). Implementing the subcritical crack

growth criterion rather than the KI = KIC criterion results in several improvements in the

damage model. One improvement is that the increase in crack length in each element at

each time increment is calculated explicitly from the subcritical crack growth equation.

Another improvement is the sensitivity of the results to the applied rate of loading. This

rate dependence plays an important role in actual problems in geomechanics. In drilling,

for instance, stress concentrations around the borehole can occur almost simultaneously
with the drilling. In laboratory experiments, however, rock samples are usually pre-

drilled, followed by the application of load at slower loading rates. These differences can

be examined using the rate-dependent damage model. Some results of the rate-dependent

damage model are presented in Figure 18. A thick walled cylinder is subjected to vertical
and horizontal stresses of 50 and 25 MPa, respectively. The properties used are that of

Oshima granite (table 2). In this creep test, the loads are applied instantaneously at t=0,
and held constant. Figure 18 presents the results __ hours after the loads have been

applied.

Conclusions

Linear elastic fracture mechanics is an important tool in understanding the nonlinear

deformation of rocks. There are many different mechanisms for extensile crack growth in

rocks due to differential compression, including pore crushing, sliding along pre-existing

cracks, elastic mismatch between grains, dislocation movement, and hertzian contact. We
have reviewed several fracture mechanics models for these different mechanisms, and

many similarities between the models are evident. Based on these similarities, a generic

model is proposed that encompasses the different models. Models to take into account the

effects of crack interaction are also discussed. From the micromechanical models,

nonlinear stress-strain curves are derived that exhibit strain-hardening and strain-softening,

dilatation, 02 sensitivity, and rate dependence. Also, it is shown how these models can

form the basis for continuum damage models using the finite element method.
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Figure Captions

Figure 1. SEM micrograph of Berea sandstone subjected to uniaxial compression (Ot
vertical) showing stress-induced microcracks formed by several different micro-
mechanisms, from Zheng (1989).

Figure 2. a) Cylindrical pore model for crack growth under compression. b) small-crack
approximation. c) long-crack approximation.

Figure 3. Results from the pore model of Sammis and Ashby for different values of o2/l.

Figure 4. Sliding crack model for crack growth under compression.

Figure 5. Elastic mismatch model.

Figure 6. Dislocation pile-up model.

Figure 7. Generic model for crack growth under compression. a) constant stress Oo over a
distance a at the crack center. b) linearly decreasing stress at the crack center.

Figure 8. Results of the generic model in Figure 7a for different values of o2/01, and
taking C2 = 3.

Figure 9. Results of the generic model in Figure 7b for different values of 02/01, and
taking C2 = 3.

Figure 10. Illustration of the derivation of nonlinear stress-strain curves using the effective
moduli for the body containing cracks of different lengths (straight lines), along with the KI
= KIC criterion for crack growth for each of these crack lengths (solid points). Nonlinear
stress-strain relation is the curve connecting these points.

Figure 11. Nonlinear stress-strain curves calculated from the sliding crack model without
crack interaction using the KI = KIC crack growth criterion. Parameter values used for
Westerly granite (see Table 1).

Figure 12. Nonlinear stress-strain curves calculated from the sliding crack model with
crack interaction using the Kj = KIC crack growth criterion. Parameter values used for
Westerly granite (see Table 1). Experimental results by Wawersik and Brace (1971) at the
same confining stresses (dashed lines).
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Figure 13. Nonlinear stress-strain curves from the sliding crack model without crack
interaction using the subcritical crack growth criterion. Parameter values for Oshima
granite (see Table 2).

Figure 14. a) Nonlinear stress-strain curves from the sliding crack model with crack
interaction using the subcritical crack growth criterion, at four values of applied strain rate.
Parameter values for Oshima granite (see Table 2). b) Experimental results by Sano et al.
(1981) at the same strain rates.

Figure 15. Creep vs. time using the sliding crack model with crack interaction and using
the subcritical crack growth criterion, at three values of creep stress. Parameter values for
Oshima granite (see table 2).

Figure 16. Contours of damage for a thick-walled cylinder subjected to horizontal and
vertical stresses of 260 and 130 MPa, respectively. Damage model based on KI = KIC
crack growth criterion and sliding crack model with crack interaction.

Figure 17. Contours of damage for a thick-walled cylinder subjected to horizontal and
vertical stresses of 260 and 130 MPa, respectively. Damage model based on KI = KIC
crack growth criterion and sliding crack model with crack interaction. Isotropic damage
also added.

Figure 18. Contours of damage for a thick-walled cylinder subjected to horizontal and
vertical stresses of 50 and 25 MPa, respectively. Damage model based on subcritical crack
growth criterion, and results are shown after loads have been applied for __ hours.
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ASYMPTOTIC ANALYSIS OF COHESIVE CRACKS AND ITS
RELATION WITH EFFECTIVE ELASTIC CRACKS

J. Planas and M. Elices
Department of Materials Science. Escuela de Ingenieros de Caminos.

Universidad Polit/cnica de Madrid. Ciudad Universitaria. 28040-Madrid. Spain.

ABSTRACT

Replacement of a cohesive crack problem by an approximate linear elastic problem was
proven useful in some instances. This contribution provides a unified treatment of a wide
class of equivalences between such problems and sets limiting conditions for the effective
crack models. After reviewing the cohesive crack model, the concept of equivalent crack
is introduced and some examples of equivalences are discussed. Finally, the equivalences
are analyzed in the limit of very large sizes, and it is shown that some equivalences,
different for small sizes, nicrge when the specimen size is increased. Some equivalences,
however, remain different, particularly the equivalence whic1 is at the root of the R-
CTOD-curve model. Equations to improve the predictions of this model are given for
large sizes.

1. INTRODUCTION

Modelling crack initiation and propagation in cohesive materials leads to solving a non
linear fracture mechanics problem and, with a few exceptions, one has to resort to
numerical analysis. Under these circumstances it is quite natural to look for approximate
solutions based on Linear Elastic Fracture Mechanics (LEFM), a field where computation
is easier and more experience is available.

The substitution of an actual fracture process -with a plastic or non-linear zone
surrounding the crack tip.- by an effective or equivalent crack was probably the first
approximation to non-linear fracture problems. In the early approaches the effective
crack extension was mildly related to the size of the plastic zone in quite an intuitive way,
but the ability of the effective crack to represent the actual behaviour was not deeply
investigated at a theoretical level, although it was extensively used in experiment
interpretation and in design.

The equivalent linear elastic problem has to be solved in conjunction with an associate R-
curve or, otherwise stated, a crack growth rule has to be independently stated as a
relationship between the effective crack growth resistance and the effective crack
extension. This is not the only price one has to pay for simplifying the cohesive crack; it
was proven that the R-curve is geometry and size dependent -i.e., is not a material
property- and, consequently, the equivalence becomes severely restricted.

In spite of these shortcomings there is some evidence [1] showing that for usual
geometries and available sizes, differences among R-curves (when adequately
formulated) are well inside the experimental scatter and, in this respect, they may be
considered a material property for practical purposes, as long as peak-load versus size
prediction is concerned.

However, there is no way to know a priori whether this R-cu;-;e which fits very well the
peak-load size effect will be equally accurate in describing other aspects of the behavior,
for example the load-displacement curve, or any other curve.
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The aim of this contribution is to deepen in this research line and provide limits of validity
of the effective elastic crack models as approximations of cohesive crack models. In this
paper the concept of effective elastic crack is discussed first and afterwards the
equivalence for large sizes is explored with the help of the asymptotic method, already
developed by the authors [2, 3, 4].

2. THE EQUIVALENT ELASTIC CRACK

We shall restrict to a class of cohesive materials and loading according to the following
hypothesis:

H. 1.- Loading: Loading is assumed to consist in monotonic mode I crack growth,
achieved by symmetric proportional loading of an initially symmetric specimen.

H.2.- Bulk Behaviour: The material displays linear elastic bulk behaviour -with Young
modulus E and Poisson's ratio v- as long as the major principal stress does not
reach a critical value aR.

H.3.- Crack Initiation: When the maximum principal stress reaches a1R (the tensile
strength) fracture is initiated and strain localization takes place in what is called the
Fracture Process Zone (FPZ). The FPZ is modelled as a cohesive crack where the
strain localization is idealized as a displacement jump or crack opening, while
cohesive stresses simulate the softening behaviour.

H.4.- Crack Evolution: Once the cohesive crack has formed, the stress transferred
through the crack faces is assumed to depend upon the relative displacement of the
crack faces.

For these loading conditions, the stress normal to the crack plane, a, is supposed to be

given by a single-valued, non-negative function of the crack opening w, i.e.:

0 = F(w) where F(O) = OR and F(w) > 0 (2.1)

The material function F(w), together with E and v, suffice to characterize the cohesive
material behaviour, as far as monotonic mode I is concerned. Based on this function,
usually called the softening curve, several definitions were done:

a.- The work needed to monotonically open a crack of unit surface up to w, the specific
work supply, is a material function given by

W
WF(w) = JF(w')dw' (2.2)

0

b.- The specific work supply needed to fully open a unit surface is also a material
property called the specific fracture energy GF (or, simply, fracture energy), i.e.,

Wc

GF = JF(w')dw' (2.3)
0

where, it is assumed that the value of F(w) is zero for crack openings exceeding wc.

Now, let us go back to the concept of equivalent crack, and consider a particular
equivalence -the force-displacement equivalence- to fix the idea. Two geometrically
identical cracked samples, as shown in figure 1, are loaded under displacement control u.218
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One sample is made with a cohesive material, as defined above, and the other is made
with a linear elastic material. The measured response of the two samples -i.e. the loads
P and Peq - for every displacement u will be different, but we can force the responses to
match each other, P = Peq, by choosing a suitable equivalent crack length aeq and a
suitable equivalent crack growth resistance Req at each deformation level.

In doing so, we force both samples to exhibit the same P-u behaviour, but in general, the
equivalence ends here; stress or displacement fields, or relevant parameters like CMOD or
CTOD, are not the same. Moreover, the price paid for the equivalence is that the linear
elastic material has not a constant crack growth resistance. Instead, a changing value with
crack length is needed in order to keep the P-u equivalence. Moreover the R-Aa curve
obtained is not a material property, it depends on the geometry and specimen size.

At first sight, the advantages of using this equivalence are not obvious since there are not
simple rules for the generation of the R-curves for every geometry and size. However, in
some circumstances this can be done as we shall see later.

In a general equivalence, the equivalent resistance to crack growth may be obtained (for a
monotonic process), by using the classical concepts of LEFM, because the equivalent
specimen is, by construction, linear elastic. Given the equivalent load Peq and the
equivalent crack length aeq, we may compute the stress intensity factor for the equivalent
crack, which will always take the form:

_: Pe- s(al (2.4)
KI 1 ~~~ 5= 7I( 'fD D )

where B is the specimen thickness, D one of its characteristic in-plane dimensions, and
S(a/D) is the geometrical shape factor.

Owing to the postulated linearity of the material of the equivalent specimen, the resistance
to crack growth may be written in any of the following equally valid forms:

Re := GReq = JRe = -2 (2.5)

where GR is the resistant-energy release rate, JR the resistant-J integral, and KR the
resistant-stress intensity factor, and E' is the effective elastic modulus for generalized
plane stress or plane strain. Since the equivalent crack is on the monotonic quasi-static
loading curve, hence in a state of incipient growth, the resistant-K must be equal to the
driving-K in Eq. (2.4), and then

Rq:= 1K E'(,0 (2.6)

2.1. P-Y Equivalences

This kind of equivalence is shown in figure 1. The actual sample is sketched on the left,
its cohesive zone has grown monotonically up to C, and the corresponding load is P(C).
The equivalent sample, made with an elastic non cohesive material, is sketched on the
right and it is loaded with same P value (hence the P equivalence labeling). Notice that the
crack length is not ao but aP'- = ao + AaP-Y, where P stands for the imposed load and Y
for the magnitude related with the second degree of freedom. One should realize that the
stress and displacement fields of the right hand sample are known when the load and the
crack length are known. Since load is fixed, only one degree of freedom remains.
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2.1.1. P-u Equivalence

When load point displacement u is chosen as a second variable, one arrives at the load-
displacement equivalence. If P and u are measured in the actual sample, the P-u
equivalent elastic crack length a/1'- can be computed from:

Ce(aP-u) = u (2.7)

where Ceq(a) is the expression for the compliance of the equivalent specimen for a crack
length a, which may be obtained from linear elastic analyses.

Equation (2.7) determines the equivalent crack length at each loading step, from which,
and the known load, other magnitudes may be computed for the P-u equivalent specimen.
In particular, the P-u equivalent crack growth resistance RP-1" may be obtained from
equations (2.6) and (2.4) substituting R, = RP-U, a = aP-u and Peq = P. The resultant R-
curve will be geometry and size dependent because of the implicit size and geometry
dependence of both members of equation (2.7)

2.1.2. P-CMOD Equivalence

When CMOD (Crack Mouth Opening Displacement) is chosen instead of the
displacement associated to the load, one has a P-CMOD equivalence. The P-CMOD
equivalent elastic crack length aP-CMOD can be computed from an equation entirely similar
to (2.7),

CCMOD(aP-CMOD) = CMOD (2.8)eq P-,MOD

where CCMOD (a) is the expression for the compliance associated to CMOD for a non
cohesive sample with a crack of length a.

The P-CMOD crack growth resistance may be obtained -after computing the equivalent
crack length from (2.8)- from (2.6) and (2.4) with the adequate change of indices as
done before for the P-u equivalence. The same comments as before, regarding size and
geometry dependence of R-curves, can be done.

It can not be stated, at first sight, that equations (2.7) and (2.8) are equivalent and, hence,
there is no reason for aP-u and aP-CMOD to take the same value.

2.2. X-Y Equivalences

The above reasoning used to set P-X equivalences can be generalized to any couple of
variables X-Y. Now, the actual specimen and the equivalent (or virtual) specimen are not
bearing the same load, in general, and the equivalent load pX-Y and equivalent crack
length ax-Y corresponding to the virtual specimen can be computed by equating X and Y
in both specimens:

Xeq(PX'Y, ax-Y) = X (2.9)

Yeq(Px 'y, axY) = Y (2.10)

where the left hand members are the elastic expressions for magnitudes X and Y in the
equivalent specimen and the right hand members the actual values of X and Y (either
measured or computed using the cohesive model).
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Equations (2.9) and (2.10) determine the equivalent load and crack length, from which
any other magnitude can be found for the equivalent specimen. In particular, the
equivalent crack growth resistance is, again, obtained from (2.4) and (2.6) with the
obvious equivalence specifiers: R e = Rx , a eq = aX 'Y and Peq = pX.

2.2.1. J-CTOD Equivalence

The couple J-CTOD is an example of the generalized X-Y equivalence The variable J
stands for the J-integral, with the essential remark that when the cohesive sample is
considered,the J-integral has to be taken over a path always surrounding the cohesive
zone. Under such circumstances it was shown [51 that:

J = WF(CTOD) (2.11)

where WF, the specific work supply, was defined in (2.2). For the non-cohesive sample,
J is equal to K 2 /E' as stated before in Eq. (2.5). The variable CTOD is the crack
opening at the initial crack tip.

The couple of equations (2.9) and (2.10) for this particular equivalence are, after use of
(2.6) and (2.11):

[K1eq(pJ-CTOD, aJ-CTOD)]2
E'- WF(CTOD) (2.12)

weq(PJ'CTOD, a]-CT OD, a0) = CTOD (2.13)

where Weq(P, a, ao) is the crack opening at the initial crack tip location a0 of the
equivalent specimen subject to load P when the crack length is a.
These two equations may be used in different ways. We first notice that once expressions
for K, and w -depending only on geometry and loading- and for WF -- depending
only on material- are given, (2.12) and (2.13) provide the parametric representation of
the P-a curve, with parameter CTOD. We further notice that the LH member of (2.12) is
the equivalent crack growth resistance (2.6) which, according to (2.12) is a unique
function of CTOD. This equi. -ence results, then, in a R-CTOD curve model, previously
analyzed by the authors on Q. -rent grounds [1].

Equation (2.13) may be made more explicit by writing the CTOD of the elastic sample
(LH member of 2.13) in the form derived in [6]

pJ CrOD8 aJCOD) (AaJCOD) /2 L (AaJCTOD)
W p O= _a.:-.-, Kla(PJ' )T O D

- 2nrE' (2.14)

where L(Aa/D) is a dimensionless function implicitly depending on shape and initial crack
'ength and D is a characteristic structural length (for example, beam depth). The function
L(AaID) satisfies the condition L(O) = I for any geometry.

The use of this equation in (2.12) and (2.13) allows the elimination of the load, and
further use of (2.6) reduces the equations to:

RJ-CT OD = WF(CTOD) (2.15)

AaOD L (A TOD) E' CTOD2

D  WF(CTOD) (2.16)
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The first of this equations is no more than the R-CTOD equation, linked to the material
softening curve by (2.2). The second equation (2.16) gives the J-CTOD equivalent crack
extension. The set of the two equations is the parametric representation of the R-Aa curve
which must be noted to be size and geometry dependent, because of the presence of the
function L(ia/D). Only for D-o* the R-Aa curve becomes geometry independent because
then AaID--) and L--1.

From these equations and the relationships (2.6) and (2.4) the load pJ-CTOD acting on the
equivalent specimen for a given CTOD may be obtained. There is no reason to expect that
this load coincide with the actual load P. However, it was found that the maximum load
can be accurately predicted using the equivalent sample, at least for notched beams. As an
example, for concrete beams (where Ich = EGF/aR2 was supposed equal to 0.3 m), the
error was less tnan 5% for beam depths larger than 8 cm [1].

2.2 2. Bazant Size-Independent R-Aa Equivalence

As already stated, any of the above equivalences lead, at least in principle, to size
dependent R-Aa curves. Bazant has put forward a method to determine a size-independent
-but geometry-dependent- R-Aa curve from the knowledge of the size-effect curve, or
variation of peak load Peak with size D for geometrically similar precracked structures
[7, 8, 9].

Bazant's approach is a general X-Y equivalence in the sense that two conditions are
imposed. The first condition is that the peak load must be the same on the actual and on
the equivalent elastic specimen for every size D. The second condition is that the R-Aa
curve must be size independent. The only input is the size effect curve, which may be
written as a function Ppeak(D), known from experiments or by computation. The
unknowns are the equivalent resistance and the equivalent crack extension at peak load
for every size. When the size is eliminated, the R-Aa curve appears. The result, derived
and used by Bazant in many papers, is that the R-curve is the envelope of the following
uniparametric family of functions, with parameter D:

RB-G = - (PpeO S 0( + AaBG (2.17)E' B~/ Nr D

where a0 = ao!D is constant because of geometrical similarity, and. superindex B-G
stand for Bazant and General, because no special size effect curve is postulated here. The
size effect may come from a cohesive model, from Bazant's size effect law, or from any
other imaginable model. The result depends of course on the size effect behaviour and
also, at least in principle, on a0 and on other hidden geometrical parameters in the shape
function S. It is size-independent, but geometry-dependent.

3. ASYMPTOTIC ANALYSIS OF THE EQUIVALENT CRACK

Let us explore, now, the equivalences for large specimen sizes. The authors developed a
method particularly appropriate for analyzing cohesive crack models when the specimen
size is large [2, 3, 41 and some results will be briefly summarized here.

It is assumed that the size of the cohesive zone, c, remains bounded as the specimen size
(characterized by D) grows and that the stress and displacement fields can be developed
in series of c/D. The zeroth order asymptotic approach is obtained when terms of the
order of c/D or higher are neglected. When the terms linear in ciD are also retained
-neglecting terms of the order of (c/D)2 - the first order approach is obtained.
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For zeroth order approach, the stress and displacement fields far from the cohesive crack
tip are the same as the corresponding fields of an elastic crack of length a0 . This is a well
known far field property. In this approximation, the solution is written as a weighted sum
of elastic solutions, with a dimensionless density function k*(x) defined on (0,1) the
values of which for every cohesive crack length c are determined from the equation:

f k*(u) (x-u) -1 /2 du - F* 8* fk*(u) (u-x) 1 / 2 du =0 (3.1)
0X

with c* = C CYR2  (3.2)

and F*(w*) =I.. F( 2  w (3.3)
CFR CrR

where x and u are relative positions on the cohesive zone, so that x and u = 0 at the initial
crack tip and x and u = 1 at the cohesive crack tip; c* and F*(w*) are dimensionless
forms of the cohesive zone size c and of the softening function F(w) in Eq. (2.1).

Once the density function k*(x) has been obtained for a given c, the J-integral, the load
expressed as nominal intensity factor (SWF for the initial crack length and the actual load),
and the CTOD may be found to be:

J = 2tc* GF I k(a) du +O( (3.4)

1

KIN = n E'F f k*(u) du + O, (3.5)

GF I ICTOD=G 8c* f k*(u) u1/ 2 du + O( ) (3.6)
OR 

0

where O(c/D) stands for a function of the same order of its argument, and it is explicited
to remember that we are in the zeroth order approach. Since Eq. (2.11) is always valid,
we may use this and Eqs. (3.4) and (3.6) to find the following essential relationship
between the cohesive zone size and the CTOD:

IE E' CTOD 2 <u/2>_2 + O(c (3.7)
C = f WF-(CIOD) (D

where <f(u)> is the k*-weighted average value of any given functionf(u) on the (0,1)
interval:

I

f f(u) k*(u) du

<flu> = R 1 (3.8)

k*(u) du
0

When the approximation is extended to first order, a new far field property -not so
obvious- was deduced (restrictedly in [3], a complete proof will be published
elsewhere):

For a cohesive material and a general geometry under mode I loading, every far field may
be approximated, up to and including order c/D, by the corresponding elastic field of a
crack of length ao + AaFF. where AaFF.. is the Full Far Field effective (or equivalent)
crack extension given,for each cohesive crack size,by the following equation 223
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AaFFcc = C <U> (3.9)

where < > has the same meaning as before. Notice that this equation is based only on the
zero order solution, and has a meaning only for first order approximation. The existence
of a full far field equivalence for higher orders of approximation.is dubious.

It is possible to express AaFF.. in terms of the CTOD and to derive a lower bound for it.
Substituting c from (3.7) into (3.9) we get:

A x E'CTOD2  <U> +( / (.0
-aF. + (3.10)

Use of the Bunyakovsky-Schwarz inequality in the first term of the RH member of this
equation, and the fact that the second term vanishes as D grows to infinite, delivers the
lower bound theorem:

AaFFo, > -- WCTE) for c/D small enough. (3.11)3T WFCMD)

3.1. Far Field (FF) Equivalences

Let us consider the equivalences based on variables associated with fields far away from
the cohesive zone (FF, far fields), and this limited to very large sizes for which the full
far field equivalence exists to a given degree of accuracy. Several among the variables
used to define equivalences in the previous section are far field variables. This is
obviously the case for P, u and CTOD , but also for J. The later is a very special case
because it comes from a path independent integral that may be performed along any
contour. Hence, if two specimens have identical far fields they also have identical J-
integrals, eventhough their near fields may be essentially different. This is in fact the
dual of a reasoning frequently used in LEFM (equal near fields imply equal Js even if far
fields are essentially different).

According to the preceding, the equivalences in which both indices correspond to far
fields are then mutually equivalent, and we have for a given situation (a given cohesive
zone size):

Aa , = Aar u = Aa CM° D  (3.12)

where subscript -c means infinite (very large) size.

The R-Aa curve for zero order approximation is expressed parametrically by the first term
of Eq. (3.4) for R and (3.9) for Aa. To get a first order approximation, the linear term in
Eq. (3.4) has to be included which requires the solution of a further integral equation
similar to (3.1).

It is intersting to comment Bazant Equivalence for a Cohesive model at this point (B-C).
Bazant equivalence is based on the knowledge of the peak load over a certain range of
sizes. The peak load is a far field property, but the necessity of having a range of sizes to
find the R-curve limites the analysis for large sizes. Indeed, if we know the size effect for
only one size, no information at all about the R-curve can be obtained. If we know the
size effect in the neigborhood of a size (peak load and its derivative with respect to size)
only one point of the R-curve - and the slope at this point- may be obtained, wich
corresponds to the peak for this particular size. From the asymptotic size effect equation
previously obtained by the authors, and the definition of the B-C equivalence, it may be

224 easily proved that the B-C equivalence is also far field at the peak:
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Aa B-C = Aa FF and R B-C _ R = G (3.13)
-,peak -pa oapeak oapeak

3.2. The J-CTOD Equivalence

When the variables chosen for the equivalence are related with the cohesive zone the far
field property can not be directly exploited. This happens, for example, with the variable
CTOD and with the equivalence J-CTOD. In principle, there is no reason to suspect that
Aal-fCTOD and AaFF coincide for very large sizes, and we will see that they do not.

Consider first the J-CTOD equivalence in the limit of large sizes. Putting L = I for D -4
in Eq. (2.16) one inmediately obtains

Aj-c _ 7, E CTOD2  (3.14)

which is obviously the approximation of order zero of fthe J-CTOD equivalent crack
extension , so that in a neigborhood of c/D = 0 one has

AaJ'C  J(D = AaJ'Cc D + (3.15)

It appears that the RH member of equations (3.11) and (3.14) coincide, so that the lower
bound theorem above turns out to state that the the FF equivalent crack extension is
always larger than the J-CTOD equivalent crack extension in the limit of large sizes:

Aa 0 > Aa C Fr D  (3.16)

One may use the Full Far Field equivalence for large sizes to find first order relationships
between the actual load P and displacement u and those determined through the J-CTOD
equivalence, pJ-CTOD and ul'CTOD .

To obtain the relationship between the loads we just write that, by the very definitions of
FF and J-CTOD equivalences

j = jFF = jJ-CTOD (3.17)

The second equality obviously imply that the stress intensity factors at the equivalent
crack tips must be equal in FF and J-CTOD equivalences. Using then the expression
(2.4) one finds

PS(~oA.- p-'O.( AaF)J'C T O p )

S(a + D = PJ-CrD.S(ao + (3.18)

from which one obtains, accurate to first order:
-- FF -- aO'D -

pJ-crOD = p 1 + "D+o(" ) (3.19)

where o(La/D) stands for a function vanishing faster than its argument.

To obtain the relationship between the displacemens, we first recall that the displacement
in an equivalent elastic specimen may be always written as
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(a.) P(3.20)ueq = CqPeq =C*(T)i (.20

where Ceq is the compliance and C*(a/D) a dimensionless compliance, related to the
shape factor for the stress intensity factor S(alD) in (2.4) by the relationship

2 S2(-) = C-~e)(3.21)

where C*' indicates the first derivative of C* with respect to its argument. This equation
follows easily from the well known relationship of LEFM between G and the derivative
wid respect to crack length of the elastic energy.

Writting now aeq = ao + Aa; , ao/D = a0 = constant, and using (3.21) for the first
derivative of C*, we may find le first order expansion of (3.20) as

Ue=C*0 Bp 1+ 2S 0
2 Aaeq (3.22)

Ueq I +is +(3.22)B E'( C * 0 D ) ,,M/

where subindex 0 for C* and S means values for the initial crack length

According to the far field equivalence theorem, at a given instant the load and
displacement in the actual specimen are equal (to first order) than those in the FF
equivalent specimen, hence: "

2S0 2 Aa F (3.23)u = C'0 P I + o + (3.23)
B E' ( C*o D

For the J-CTOD equivalence the analogous result is found as

pJ-CTOD ( 2SO2 AaJCTOD AaJCT*OD
UJCTOD=C*0 I l + C*0 D )+o " - ",)(3.24)

The relationship between displacements is now found by eliminating P and pJ-CTOD from
(3.23), (3.24) and (3.19):

FF J-CTOD
2Aa,-Aa~ . FF\

UJ-rOD = U - -2S) D )+0 oA ) (3.25)

It appears, then, that up to first order the J-CTOD equivalence may be used to find
estimates of load and displacement that can be further corrected using (3.19) and (3.25) if
an estimate of the difference between the two effective crack extensions is available. In
the next section some numerical results are presented regarding this difference.

3.3. Numerical results for the FF and J-CTOD equivalences at infinite
size

To have a feeling of the trend of the equivalences for large sizes, a numerical analysis
was performed and three softening curves, depicted in Fig. 2, were investigated; a
rectangular softening (or Dugdale softening ), a linear softening, and a quasi-exponential
softening. The numerical method described in [31 was used to solve the integral equation
(3.1) for a number of cohesive zone sizes.
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At each step, the equivalent resistance to crack growth for FF and J-CTOD equivalences
was obtained from equation (3.4) since in these equivalences R = J = J. The FF
equivalent crack extension was obtained from Eq. (3.9) and theJ-CTOD equivalent
crack extension from Eq. (3.14), after obtention of the CTOD from (3.6). The resulting
R-Aa curves for thle two equivalences and different softening curves are given in Fig. 3.

For a given softening curve, we observe in Fig. 3 that although there is a neat difference
between the two R-curves at a numerical level, it seems that they would be hardly
distinguishable at the experimental level since both curves would fit into the usual
experimental scatter band. Hence, at least for very large sizes, the J-CTOD equivalence
provides a relatively easy-to-apply approximation of the actual overall behaviour
(remember that for this equivalence the R curve is known in parametric closed form).

As far as the P-u curve (one of the basic experimental "observables") is concerned, the
predictions from the J-CTOD equivalence can be improved by using the relationships
(3.19) and (3.25) which depend basically on the difference between the equivalent crack
extensions for the FF and J-CTOD approximations. Fig. 4 gives a picture of this
difference for the three softening curves previously envisaged. It shows a proportional
rising at the begining of loading and ends in a plateau after the peak load, where steady-
state crack growth takes place (only for infinite size, which is our case). We notice that
the plateau values are very close for the progressively softening models, and may be a
constan value of 2.7 % of the characteristic size lch could be a good general estimate for
the difference for any reasonably smooth softening curve.
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Figure 1. Definition of equivalent elastic specimen.
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Figure 2. Softening curves analyzed in this work.
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Figure 3. R-Aa curves for the FF(Far Field) equivalence and
for the J-CTOD equivalence, for infinite size.
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Figure 4. Difference between the equivalent crack extension
of FF and J-CTOD equivalences, for infinite size.
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SYNOPSIS

It now well established that many monolithic ceramics exhibit the

property of rising crack resistance with crack extension; i.e. R-curve or T-

curve behavior. The magnitude of the toughness increase can be respectable,

up to factors of three to four in some systems, occurring over crack

extensions of several millimeters or hundreds of grain dimensions. The R-

curve characteristic determines mechanical behavior. For example, the

stabilizing effect on crack growth can lead to the property of flaw tolerance

i.e. a decreased dependence of the strength on flaw size, which is a

desireable property for structural applications in which the component is

subject to damage.

The magnitude and form of the R-curve is sensitive to detailed

characteristics of the microstructure such as grain size and shape, second

phases, grain boundary toughness and intensity of residual stresses. The

strong influence of microstructure leads to potential manipulation of crack-

resistance properties through controlled processing. Opportunities for the

development of improved structural ceramics rest with a proper understanding

of the influence of R-curves on properties, an appreciation of the role of

microstructure in crack-resistance characteristics, and the development of

novel microstructures which exploit the operative toughening mechanism(s).

A substantial body of evidence has been gathered which demonctrates that

the principal mechanism of R-curve behavior in monolithic ceramics, such as

alumina, is grain-localized bridging at the crack interface behind the

advancing tip. Bridging grains exert closure forces across the crack

interface and shield the tip from the applied stress-intensity field. The

accumulation of bridges with crack propagation leads to increased toughness
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with extensions over many grain diameters.

In the present work we examine the phenomenon of crack-resistance

behavior due to grain bridging using alumina-based ceramics as a model system.

The paper is divided into four sections. In the first a model for grain

bridging, formulated in terms of microstructural parameters, is reviewed and

discussed [1]. Particular emphasis is placed upon the role of microstructural

elements and suggestions for adjustments of R-curves through thoughtful

processing are given. The second section deals with the influences of an R-

curve on a variety of mechanical properties. This latter section is

subdivided into three domains of crack size: short - concerning wear

properties [2]; intermediate - strength [3,4] and fatigue (static, dynamic,

cyclic) [5,6]; long - cyclic fatigue. The links between microstructure, R-

curves and properties will be further stressed in the discussion of

properties. The third section presents results of a more detailed

investigation of grain bridging in the form of in situ SEM observations of

crack-microstructure interactions [7]. Measurements of crack profiles

demonstrate directly the closure forces exerted by the bridges on the crack.

The final section presents some general conclusions and recommendations for

-cure work.
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ABSTRACT

The creep and creep fracture behaviour of two hot-pressed

aluminas are presented, for both flexure and tension testing.

Steady-state power-law creep is observed with a stress exponent of

about 2 for each material. Three distinct fracture regimes are

found. At high stress in flexure, fracture occurs by slow crack

growth with a high stress dependence of the failure time. At

intermediate stresses, in both flexure and tension, creep fracture

occurs by multiple microcracking after modest strains. Failure

times exhibit a modest stress dependence (stress exponent of 2 in

tension and 3 in flexure). Thus, the Monkman-Grant is observed in

tension, with a constant equal to 0.09. The failure times are

considerably longer in flexure than in tension, due to the

constraint imposed on crack growth by the bending geometry. We

conclude that flexure cannot be used for creep lifetime assessment,

even in simple, single phase materials such as A1203. At low

stresses in tension, failure also exhibits Monkman-Grant behaviour,

but with a much higher constant 0.21. The material shows the onset

of superplastic behaviour.
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1. INTRODUCTION

The increasing emphasis on the development of structural
ceramics for high temperature applications has led to a greater
need for understanding creep fracture in these materials. Typical
operating lives for engine components, for example, will be several
thousand hours. It is therefore inappropriate to design components
for such applications using only data drawn from short-term tests.
Long term testing however, is costly. Therefore, a fundamental
understanding of the processes which control creep fracture is
imperative. In this study, a model material, hot-pressed A1203, has
been used. Although A1203 itself is not suitable as a high
temperature structural material, its behaviour is representative of
"dry grain boundary" ceramics (i.e. ceramics without significant
amounts of glass between the grains). Moreover, it is a potential
matrix material for some structural composites with high
temperature capability. Other structural ceramics with high
temperature strength such as silicon nitride contain extensive
glass as a second phase. Moreover, they are microstructurally
unstable at high temperature. Creep fracture data for these
materials are therefore more difficult to interpret.

Creep fracture in hot-pressed alumina has been studied
previously2 6, using 3-point flexure testing. The temperatures used
in these tests were fairly high (1300-14000C) with very short
failure times (<3 hours). Two failure regimes have been
identified. In the first, failure is by slow crack growth. In the
second, general damage is associated with the growth and linkage of
microcracks. In keeping with previous work on metals, Dalgleish et
al.6 attempt to analyze their results in the general damage region,
using the Monkman-Grant relationship which suggests that the

product of steady-state strain rate and failure time should be
constant, independent of the applied stress. They find, however,
that the Monkman-Grant product is stress-dependent, and suggest
that this is due to the stress dependence of the crack coalescence
processes. They also caution6 that their results may be related to

testing geometry.
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In the current program, lower temperatures and strain rates,
and thus larger failure times, have been studied. In addition, the

use of tensile testing is explored, in order to avoid the
ambiguities inherent due to stress redistribution in bending.
Finally, the effect of impurities is invertigated by studying two

separate hot-pressed aluminas.

2. NXPZRXNBNTAL

2.1 aterials

Two commercially available hot-pressed aluminas were used in
this study. The first, manufactured by AVCO* in 1983, contained

about 0.3 wt% MgO as a sintering aid. The second, manufactured by

ARCO" in 1986 contained only 200 ppm (by weight) MgO, but had
about 800 ppm Y. Both materials were obtained in the form of hot-

pressed billets. Both were of high density with residual porosity
<0.05% in each case. Both contained equiaxed grains with a mean
linear intercept grain size of 1.6 pm for AVCO and 1.0 Am for ARCO.
Electron microscopy did not reveal any grain boundary glass in
either material.

2.2 Flexure Testing

Flexure bars 651 mm long were machined from the billets, using
a prescribed machining schedule (Robertson, 1989). Most bars had
a fixed cross-section of 4x6 mm. However, some were deeper

(5x10 mm), thus enabling larger strains to be achieved. The
tensile face was always that taken from closest to the centre of
the billet. The tensile axis was perpendicular to the hot pressing

direction. The tensile edges were bevelled on a 600 mesh resin-
bonded polishing plate. The tensile faces and the bevels were then

lapped to a 0.25 pm diamond finish.

AVCO, Systems Division, Wilmington, MA

* ARCO, Silag Division, Greer, SC.
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Samples were tested in air, using one of two four-point bend

rigs, with 20 and 28.5 mm inner span, and 40 and 54.0 mm outer

span, respectively. Deformation was monitored continuously using

3 probe extensometets.

2.3 Tensile Testing

Creep fracture testing under tension eliminates the
uncertainties associated with the time-dependent stresses which
develop during bend tests. We have therefore designed a simple

tensile creep tester for this work. It uses hot grips so as to
minimize specimen material requirements and machining costs. Thus,

pin-loaded specimens, as shown in Fig. 1, were designed. Provided
that care is taken to align the loading holes accurately, this

specimen provides for minimal bending.

Tests were conducted under dead load in a clamshell furnace,

using SiC pull rods and load pins. Strain measurements were made
using a long focal length telescope. This was sighted on knife

edges machined into each of the four shoulders of the specimen (see

Fig. 1). In order to allow for this, a sighting tunnel with a

sliding glass window was placed on one side of the creep furnace.

Opposite the window, a rectangular wall was machined into the

furnace insulation. This was necessary to produce a dark

background, against which the specimen was visible. The precision

with which flag-to-flag displacements could be measured was found

to be ±5 Am.

In converting the displacements to strains, it is necessary to
divide by the length of the deformation zone. However, for the

configuration used here, this is not known exactly. Deformation is

uniform within the 12.5 mm gauge section. However, because of the

need for gradual flares out to the specimen shoulder, a reduced but

significant rate of deformation occurs outside the gauge section.

We have therefore normalized the displacements by a nominal gauge

length of 20 mm, a value intermediate between the reduced gauge

length and the shoulder-to-shoulder separation. This value also
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produces strains which are consistent with those measured on failed
specimens.

The flat faces of each specimen were lapped by hand prior to
testing, to a 3 Am diamond finish. Edges were bevelled
longitudinally so as to reduce the risk of edge failure. The
loading holes were also bevelled in order to minimize bending due
to any small misalignment of the SiC loading pins. A more complete
description of the tensile test facility is available elsewhere.

Most samples were tested at a single stress to fracture. In a
few cases however, incremental stress change tests were conducted
to determine the creep stress exponent. Similarly, a few samples
were tested in compression in an MTS servohydraulic machine. In
this case the samples had a 4x4 mm square section and a height of
7 mm. The samples were compressed between SiC platens and the
strain was determined by a differential extensometer measuring the
relative displacements of the platens.

3. RESULTS

3.1 Preliminary Results

Initial work was performed at 13500C on the AVCO material, in
flexure. In these early tests, larger bend bars with a 5x10 mm
cross-section were used. Outer fibre strains of up to 7% were
possible with this configuration. Tests with nominal outer fibre
stresses between 12 and 39 Mpa were performed. No fracture
occurred. Indeed, no microcracking was visible on the tensile
face. Moreover, it was discovered8 ,9 that this material swells at
1350°C; i.e. cavity growth occurs due to the pressure exerted by
trapped gas in residual porosity, even in the absence of an applied
stress. Further testing was therefore constrained to temperatures
of 12500C and below, in which case swelling rates are found to be
negligible.
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3.2 Flexural Results

Flexural tests were performed on both materials over a range

of temperatures. However, the majority of tests were performed at

12504C for ARCO alumina and at 11500C for AVCO alumina. Typical

creep curves are shown in Fig. 2, fcr AVCO tested at 11500C. Outer

fibre tensile strain c, is calculated from the 3-point probe

displacements using the analysis of Hollenberg et al.10 . The

stresses listed are the nominal outer fibre stress at steady-

state'. These are obtained from the applied elastic stresses using

the formulation of Cohrt et al."
2n+1l
3n el

where the stress exponent n, for this material, is 1.8. The creep

rate data are plotted in Fig. 3 for both the ARCO and AVCO

materials. Strain rates were measured at a strain of about 0.02.

For tests conducted at stresses above 175 MPa for the AVCO

material (or 180 MPa for the ARCO material)*, steady-state is never

achieved due to short time fracture of the samples, and creep data

is not reliable. At lower stresses, however, steady-state creep

does occur. Power-law creep behaviour is apparent with a stress

exponent of 1.8±0.2 for ARCO, and 2.0±0.2 for AVCO. The activation

energies, estimated from the data are 390 kJ/mole for ARCO, and

480 kJ/mole for AVCO.

The transiticn in creep behaviour at about 175 MPa is

accompanied by a dramatic change in the fracture benaviour. This is

clearly shown in Fig. 4 in which the failure strain is plotted as

a finction of stress. At stresses above the transition stress, in

both the ARCO and AVCO aluminas, fracture occurred at very low

strains, under 1%, and in very short times, typically less than 2

hr. At lower stresses, fracture occurred in the AVCO samples only

Since the estimated time to relax to steady-state (a few
minutes at 12500C) is considerably shorter than m.st of the tests,
we use this as the most reasonable indicator of stress level.

S A steady-state stress uf 170 MPa corresponds to an initial
elastic stress of 200 MPa.
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after strains about 12% were reached, while in the ARCO samples
fracture did not occur out to the maximum strain attainable using
deep bend bars, near 18%. The stress rupture data are plotted
in Fig. 5. They also give clear evidence of a change in hehaviour
at about 175 MPa steady-state stress.

3.3 Tensile Tests

Tensile tests were performed only on ARCO alumina at 12500C.
Most samples were crept to failure. The creep curves are shown in
Fig. 6. Very little primary creep is observed as compared with the
bend tests. There is also very little evidence of tertiary creep
prior to failure. The small increase in strain rate at large
strain is due largely to the influence of increased stress during
creep at constant applied load.

The steady-state creep data are summarized in Fig. 7. These
data were obtained from both fixed stress and from stress-change
tests. The stress exponent for tensile creep is 1.8, the same as
that obtained from the compression and flexural tests. Scatter in
strain rate between individual samples was significant (see Fig.

7). However, when incremental stress tests were conducted, the
results were very consistent; i.e., the stress exponent was
constant and close to 1.8. The scatter between tests is thought to

be due in part to billet to billet variations in the material.

Failure strain increases rapidly as the stress decreases.
This is shown in Fig. 8 in which both the true failure strain e =
ln(Ao/Af) and the longitudinal strain e, - ln(11 /l) are plotted. At
the higher stresses, above 80 MPa, the failure strain is relatively
constant, around 9%. However, it increases rapidly at lower
stresses, rising to 17% at 40MPa.

The stress rupture data are shown in Fig. 9. Once again, there
are two different regions. At the two highest stresses, the data
fit a relationship of the form tf ~ Os, where the stress exponent
m is about 2. For the lower stresses, below 55 MPa a stress
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exponent of between 1.5 and 2 is appropriate, but at much longer

times. Between these two regimes lies a region in which the time

to failure increases rapidly with decreasing stress. This, along

with the rapid increase in failure strain at the !""er stresses,

suggests a transition in failure mechanism between 80 and 55 MPa.

4. DISCUSSION

4.1 Creep Behaviour

Primary CreeR

Stress redistribution during flexural tests complicates the

analysis of primary creep. However, the tensile tests on ARCO also
show primary creep. At 12500C, we find primary creep strains of

about 1%. This compares with strains of about 0.5% in a somewhat

different hot-pressed alumina, observed by Chokshi and Porter12.

Several explanations for primary creep have been suggested.

Gruffel et al.13 explain their primary creep in hot-pressed alumina

as due to concurrent grain growth. However, we have done extensive

grain growth measurements in our material and find no significant

grain growth at 12500C, although grain growth is substantial at

temperatures of 13500C and above8 9. Frost and Ashby14 have modelled

primary creep due to diffusion creep transients. For ARCO at

12500C, their model predicts strains of about 0.1% with a time
constant of 0.6 h. This is much less (both in time and strain) than

what is observed. Thus, the physical basis for the observed

primary creep is not clear. There may however, be effects due to
grain size distribution on primary creep. The dominant mode of

deformation at low strains is thought to be grain boundary sliding.

Both grain boundary sliding rates and its accommodation by

diffusion are grain-size dependent processes. Moreover, the

material contains grains of variable size. There must therefore

exist a transient, in which load is redistributed from the fine-

grained regions which deform the most readily to the coarser-

grained regions. No quantitative estimate of the strain required
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by this process has been made. However, it must be greater than
that predicted by uniform grain size models of the type developed
by Frost and Ashby". Moreover, elastic anisotropy is likely to play
a role in modifying local stresses at small strains.

Steady-State Creed

Steady-state creep was established for both materials, and in
both types of tests. The stress exponents measured were close to
2 in all cases. Similar values have been measured for a range of
hot-pressed aluminas4012,11. The significance of this exponent has
not been firmly established. However, it is similar to that
associated with superplastic deformation in metallic systems and
some ceramics16.

The activation energy measured for flexural creep in AVCO is
480 kJ/mole. This is very close to that measured by Porter et al.15

of 460 kJ/mole, and by Johnson et al.' of 480 kJ/mole on similar
MgO-doped AVCO aluminas (but not with the value of 635 kJ/mole
reported by Chokshi and Porter12, also for a similar material).
Moreover, these values all lie within the range of reported

activation energies for Al diffusion in A1203, which extends from
420 kJ/mole (ref.14, pp. 99- 102), to 684 kJ/mole17. The activation

energy for creep in the ARCO alumina of 390 kJ/mole is considerably
lower. This may indicate 0 diffusion control. For example, in a
study of neck growth between alumina spheres at 1500-19006C, Dynys
et al. 17 found Al control of boundary diffusion at high temperature
and 0 control at low. Given the different impurity levels in the
ARCO and AVCO materials, a difference in the diffusion process is
certainly possible.

The overall creep resistance of the ARCO alumina is greater,
by a factor of about 15, than that of AVCO (see Fig. 3). Thus, the
rate of creep of ARCO at 12500C, is roughly equivalent to that of
AVCO at the same stress, but 1000C cooler. Microstructurally, the
materials are very similar. The small difference in grain size is
insufficient to account for the difference in creep rate. We
therefore suggest that differences in impurity and dopant levels l
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lead to significant differences in diffusion coefficient and the
creep rate. This is consistent with the difference in activation
energy just noted. It is also consistent with our observations of
swelling in these two materials at higher temperaturess,9, in which
swelling rates are considerably higher in the AVCO material.
Swelling is again thought to be due to grain boundary diffusion.

4.2 Creep Fracture

Using a combination of flexural and tensile tests, two
transitions in creep fracture behaviour are observed. At high
stress (above about 175 MPa in flexure), failure is very rapid
(52 hour) and at low strain (:1%). Thus, failure occurs before
steady-state creep is established. For a given stress, the scatter
in time to failure is large (2 orders of magnitude). Thus, it is
difficult to determine a stress exponent for stress rupture.
However, it is clearly high, about 40. At stresses below 175 MPa,
in flexure, a transition occurs. The failure strain is much
greater (12-16% for AVCO, >18% for ARCO), and the stress exponent
is between 2 and 3.

A second transition occurs within the stress range covered by
the tensile data, for ARCO alumina. For stresses between 82 and
120 MPa, a stress rupture exponent of 2 is observed, while failure
strains remain constant at around 9%. On further reducing the
stress below 55 MPa, the failure strain increases sharply. The
stress exponent remains near two. However, the time to failure
jumps by about a factor of 3 on crossing the transition. It
therefore appears that three distinct failure regions exist,
depending on stress, for creep fracture in ARCO alumina at 12500C.

The high stress exponent observed following high stresses in
flexure is indicative of failure by slow crack growth, and this is
consistent with fracture surface observations8 . Below the first
transition, in AVCO alumina, failure also occurs by crack growth.
However, multiple cracks are observed with their eventual linkage

causing failure. In ARCO, the material develops only a few
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microcracks and cavities up to high strains. These are

insufficient to induce fracture. In tension, ARCO alumina develops

the same type of microdamage but in this case fracture is

observed. The stress exponent for rupture is N3 in flexure and 02

in tension.

The creep rupture stress exponent has often been used to

interpret the damage mechanism. An exponent of 3 for example, has
been associated with crack growth controlled by surface diffusion19,

while an exponent of 2 in this case would correspond to Monkman-
Grant behaviour. However, interpretation of damage mechanisms based
on creep fracture exponents can be misleading, partly because of

possible time dependent nucleation effects2 ,21 and partly due to the

effect of the stress redistribution in flexural specimens. Thus,

a more detailed assessment of deformation and damage processes is

required to identify the responsible mechanism for fracture. The

analysis of creep damage in these materials is the subject of a
subsequent paper8 , while the effect of stress redistribution will
be discussed next.

Stress redistribution during bending results from a variety of

processes. The first, and most commonly considered is the non-
linear nature of creep which results in load shedding from the

outer fibres0 . Microcracking and cavitation, which effectively

increase the strain in the outer tensile region, also increase load

shedding from regions under tension. This effect may also result
in a shift in the neutral axis towards the compressive side of the

flexure bar. Finally, at large strains, movement of the load
points occurs due to rotation. This reduces the moment applied to
the central portion of a flexure bar, resulting in a decrease in
the overall creep rate. This effect occurs only at large strains

and is therefore not of concern unless the ductility of the
material is significant (as it is here). Therefore, it would seem

that evaluation of the fracture mechanism on the basis of rupture
data using flexural specimens may be misleading when cavitation and

large strains are possible.

It is for this reason that tensile testing is of value and may

251



even be essential in evaluating the creep fracture behaviour of

ceramics. A comparison of the creep rupture plots in flexure and

tension (Figs. 5 and 9) reveals a much shorter creep life for the

same nominal stress in tension. This difference cannot be

rationalized simply in terms of the lover outer tensile stress

after stress redistribution. The explanation lies in the nature of

crack propagation and the local stress fields surrounding cracks.

Figure 10 shows the stress intensity factors K,,, at failure, for

both tensile and flexure specimens. These have been determined by

measuring the size of the dominant crack on the fracture surface of

each specimen. Using this and the known nominal stress on each

specimen, KIC can be estimated. The value of KIC so determined is
constant and equal to about 3 MPa mi112 for all of the tensile

specimens and for the flexure specimens in the high stress, slow

crack growth regime. However, a considerably higher value is

estimated for the flexure specimens at lower stresses. Since the

toughness of the material is not a function of geometry, this

suggests that below the first transition in flexure considerable

stress relaxation must occur in the vicinity of the crack tips,

invalidating the KIC calculation. This is apparently not the case

in tension. Crack propagation is less stable in tension. As the

cracks grow they accelerate. This sharpens the crack tips and

restors anelastic crack tip stress field. Thus, fast fracture

occurs at the expected value of Kc. In flexure however, the

geometry tends to stabilize the crack, extending the life

considerably. Thus, while flexure may be a valid test geometry

when failure is by slow crack growth of a single flaw at short

times (i.e when an elastic stress field is maintained in the

vicinity of the crack), it is not valid for determining rupture

life when creep effects become important. In these instances

tensile testing is required.

On the basis of the K,, measurements, we conclude that the

failure times above the first transition stress would be the same

in tension and in flexure. We have therefore replotted the tensile

stress rupture data including the high stress flexure data (Fig.

11). It is clear that the large increase in failure time below the

first transition in flexure is largely an artifact of the
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constraints imposed by the geometry of testing.

Another indicator of failure mechanism is the failure strain.
In the intermediate failure regime, in flexure, we find a very

small increase in ef with decreasing stress. Dalgleish et al.6

however, observed a much larger increase in the strain to failure
over the same stress range. This may be due to differences in

loading configuration. The 3-point bend geometry used by Dalgleish
et al. places a much smaller volume of material under high stress.

A constant failure strain is one indication of Monkman-Grant

behaviour. In its usual form, the Monkman-Grant relationship is:

4 asatt -CMU

where CMG is a constant. Fulfilling this equation over a range of

stress requires that the stress exponents for creep and fracture be

equal. This is approximately true for the tensile data in both the
intermediate and low stress regimes. However, CMG is different -
0.09 at intermediate stress, and 0.21 at low stress. The Monkman-

Grant relationship indicate that failure is deformation-
controlled. This is consistent with the microstructural
observations 8 in both stress regimes.

Further macroscopic evidence of the change of fracture
behaviour with stress is given by the difference between the

longitudinal and cross-sectional strains observed at failure. From
Fig. 6 the longitudinal strains, as measured by optical
extensometry, can be calculated. These values are plotted in
Fig. 8, together with the failure strains measured from the cross-
sections of the failed specimens. The two values agree at high
stress. However, at low stresses, the longitudinal strains are

much larger. The difference is due to the contribution of
cavitation and microcracking to the longitudinal strain. The

magnitude of this difference suggests a very high degree of damage
tolerance in this material at the lower stresses. Indeed, the
material verges on superplastic behaviour.
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S. SUNARY

1. Creep in both ARCO and AVCO hot-pressed aluminas exhibit
power-law behaviour with a stress exponent of 1.8 for ARCO and

2.0 for AVCO.

2. The creep resistance of ARCO is about 15 times greater than
that of the AVCO. This is thought to be due to the effect of
minor impurities on grain boundary diffusion coefficients.

3. Primary creep transients in tension are larger than that
predicted by existing models. This is most likely due to the
effect of stress redistribution within the polycrystal due to
the distribution of grain size.

4. Creep fracture exhibits three distinct regimes, depending on

the stress applied.

5. At high stress, failure by slow crack growth with a high
stress rupture exponent of about 40. Failure occurs when the
KIC for failure, estimated to be 3 MPa mi1/2, is reached.

6. At intermediate stresses, failure exhibits a modest stress
dependence with an exponent near 3 in flexure and 2 in
tension, and with a constant fracture strain. Thus, the
Monkman-Grant law is valid in this regime. The times to

failure are considerably lower in tension than in flexure,
while only the tensile tests give realistic KC values from

fracture surface observations. This suggests that flexure
testing cannot be used for estimating failure lives.

7. At low stress, failure also obeys the Monkman-Grant
relationship, but with a much higher failure strain.
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ABSTRACT

The mechanisms responsible for creep damage accumulation and

fracture have been examined in two commercial hot-pressed aluminas.
Differences between the two materials can be ascribed to minor

compositional variations. Three damage regimes have been

identified, depending on stress. At high stress, a single crack

nucleated at a processing flaw controls failure. These cracks grow
in a linear elastic stress field. At intermediate stresses, crack
tip stresses relax, and many microcracks are observed. These are
also nucleated at flaws. They grow and link under strain control.
However, the details of this process are different under tension

and bending, thus invalidating the flexure test as a means of

established creep life, even in simple, single phase materials. At

the lowest stress, extensive cavitation, with relatively little

microcrack development is observed. The material is damage

tolerant, and can be thought of as superplastic. We find that
processing flaws control the creep strength at all stresses. These

should therefore be carefully controlled in materials aimed at high

temperature structural applications.
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1. INTRODUCTION

The failure of ceramic polycrystals can generally be related to

pre-existing flaws or (in the case of high temperature failure) to

flaws which are generated during service".2. At high temperatures,

these defects can propagate under the influence of an applied

stress, coupled with creep deformation, leading to failure.

Alternatively, the applied stress can induce the nucleation of

creep cavities at grain boundary triple junctions. These cavities

grow and link to form microcracks which upon coalescence lead to

fracture. This is an overly simplistic view of the creep fracture

process however. Moreover, there are several aspects of the process

that are not well understood, mostly due to the lack of

experimental data. This paper therefore explores the mechanisms

responsible for creep damage in a microstructurally simple ceramic,

namely hot-pressed alumina.

Creep deformation of fine grained alumina can occur by several

competing mechanisms - basal slip, diffusional creep, grain

boundary sliding, and cavitation. Cavity growth can be thought of

as just another competitive deformation mechanism3,4. All

deformation mechanisms occur simultaneously during the irreversible

deformation of alumina, the contribution of each one depending on

the applied stress and temperature3,4. When cavities nucleate at

stress concentrations such as grain boundary triple junctions,

particles or slip band/grain boundary intersections, they may grow

by diffusion or grain boundary sliding, contributing to the overall

strain. Cavitation can thus be viewed as a stress relieving,

geometrically necessary feature of the deforming structure. Since

the dominant deformation mechanism is a function of stress, the

need for stress relief by cavitation may also depend on the stress,

leading to a stress dependent fracture behaviour.

In a companion papers we have shown that fine-grained alumina

exhibits three distinct fracture regimes. At high stresses (above

175 MPa for AVCO alumina, 18OMPa for ARCO), fracture occurs by slow

crack growth with very little strain and a high (of order 40)
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stress exponent of the failure time. At intermediate stresses,
fracture occurs following modest strains, and the stress exponent
in tension is 2, the same as that for creep deformation in this
material. Thus, the material exhibits Monkcan-Grant behaviour in
this regime. For the lowest stresses, fracture also obeys the
Monkman-Grant relationship, but with much larger failure strains.
The main concern of this paper is to examine the micromechanisms of
creep damage at the intermediate and low stress regimes in fin*
grained hot-pressed A1203.

2. EXPERIMENTAL

2.1 Mechanical Testing
The mechanical test procedures are described in some detail
elsewhere5.6. Both 4-point flexural testing and tensile testing
have been performed, in air, under constant load conditions. While
both materials have been tested in flexure, only the ARCO material
has undergone tensile testing. In all cases, the surfaces relevant
to subsequent microstructural and surface damage observations were
polished prior to testing. In the case of flexural tests, a 0.25Am
diamond finish was achieved on the tensile face. In the tensile
specimens, a 3Mm diamond finish was achieved on the flat faces
along the gauge length. Specimen edges were bevelled to avoid
premature damage initiation at these locations.

2.2 Microstructural Characterization

Test specimens were examined extensively using scanning electron
microscopy. In addition to the examination of fracture surfaces
and of the external faces of test specimens, internal polished
sections were examined. In this case, samples were sectioned near
the centerline of the test piece parallel to the loading direction
of the flexure bar or tensile sample. This plane was polished to
a 0.25 Am diamond finish and thermally etched6. Specimens were
gold-coated prior to SEM examination. In some cases, by taking
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special care, both an internal polished plane and a specimen face

could be examined simultaneously. This made it possible to assess
the internal penetration of cracks initiated at the surface.

3. RESULTS

3.1 Material Charaoterization

Two commercially available hot-pressed aluminas were used in this

study, one manufactured by AVCO (from 1983)', the other by ARCO

(from 1986)'. Both of these materiai have fine-grained (=1 gm)

equiaxed microstructures. Both swell upon exposure in air at

temperatures of 1350 0C and above7'8. This is accompanied by grain

growth. However, at temperatures of interest in this study, namely

12500C and below, both swelling and grain growth are negligible.

The materials differ somewhat in their chemical composition, as

outlined in Table I. The AVCO material contains about 0.3 wt% MgO

introduced as a sintering addition. ARCO however, contains only

200 ppm MgO, but 800 ppm Y. The ARCO material also contains

substantially more carbon.

TABLE I: Chemical Analysis

C Fe203  K20 MgO MnO S Si02 TiO2 Y Zn

ARCO 250 90 4 200 3 16 200 25 800 19

AVCO 140 130 6 3000 2 17 140 25 10 17
1 1 4

Values are p.p .m. y weight.
Carbon data obtained by combustion analysis; all other
analyses by X-ray fluorescence.

AVCO, Systems Division, Wilmington, MA

ARCO, Silag Division, Greer, SC.
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The porosity of each of the as-received materials is very low,

about 0.01%. However, as revealed by TEN (Fig. 1), it is

distributed differently in the two materials. The AVCO alumina

contains almost exclusively intergranular pores at three-grain
junctions, with a mean radius of 0.12 ;&a. The ARCO alumina

contains mostly intragranular porosity, typically in the form of

clusters. The average pore radius is about 15 nm.

Thermally etched, polished sections of as-received material do not
reveal many microstructural defects. However, subsequent creep
testing exposes defects in the form of porous regions, regions of
large grain size, and regions of chemical inhomogeneity. The
defects were more numerous and more severe in the ARCO material.

3.2 Failure Times and Strains

Data for time to failure and failure strain have been presented
elsewhere for both flexure and tensile testing5 . The behaviour of
the two materials is similar. They show three regimes. For both
materials, at high stress (above about 175 MPa steady-state
stress), in flexure, failure occurs by slow crack. The creep

fracture exponent m (tf ~ O&m) is difficult to determine but it is
very large, at least 40. The failure strains are low, less than 1%.
This we call the slow crack growth regime. Below about 175 MPa
there is an abrupt transition to the microcrack growth regime.
Moderate failure strains are observed (12-16% in flexure for AVCO,
8-10% in tension for ARCO), and the stress exponent is about 2 (in
tension). The ARCO alumina does not fail in flexure for strains of
up to 18%, either at 1200 or 12500C. At low stresses (below 55 MPa
in tension), a third regime is observed, the creep fracture regime.
Monkman-Grant behaviour is observed (with the stress exponent for
creep and creep rupture both equal to about 1.8). The failure

strain is large, about 17%.

The overall creep behaviour of the AVCO material parallels that of
ARCO, but at a temperature about 1000C lower. Thus, most of the
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AVCO data was collected at 11500C while the ARCO data was collected

at 12500C.

3.3 Slow Crack Growth Failures

Both materials fail very quickly above a threshold stress in

flexure*. In all cases, a single crack is found to originate at

or near the tensile surface, and propagate to failure. Only a

single crack is visible on the tensile face of these specimens. It

therefore appears that a crack propagates from the single most

damaging flaw in the specimen, accelerating rapidly as it grows.

Typical failure origins are Elown in Fig. 2. These include

internal processing flaws in the form of penny-shaped cracks

perpendicular to the hot pressing direction (Fig. 2a); regions of

abnormal grain growth, generally with many large grains in a

cluster (Fig. 2b,c); and amorphous regions (Fig. 2c). The first

two types of flaws are generally subsurface, and are clearly

present in the material prior to testing. Amorphous regions are

generally connected to the surface and may result from deposits

which develop on the surface during specimen heat-up prior to

testing. The types of failure origins observed are similar for

both materials.

3.4 Xicrocrack Growth Regime

Both materials exhibit considerable damage tolerance in this

regime. Failure occurs by the development of several microcracks

that grow simultaneously until one becomes critical. Details of the

process depend on the geometry of testing. This regime has been

explored using both tensile and flexure testing.

This does not mean that such failures do not occur in tension. However,
the tensile creep rig we have used is incapable of applying sufficient loads to
produce such failures.
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In ARCO alumina, in flexure, the samples develop relatively few

microcracks. These are mostly nucleated at chemical

inhomogeneities (Fig. 3a). They do not propagate easily through the

material. Rather, they blunt or bifurcate after propagating some

distance (Fig. 3b). Other microcrack origins include large grains,

either isolated (Fig. 3c) or in clusters (Fig. 3d). For the

maximum strains available in the bend rig (about 18%), the larger

cracks which develop never propagate to the point of failure.

In tensile specimens, the outer surface is heavily decorated with

microcracks (Fig. 4). These are also nucleated at chemical

inhomogeneities or other microstructural defects. An example is

shown in Fig. 5 of a crack on a polished internal section. A large

grain is just visible inside the crack near its centre. Another

large grain is visible ahead of the crack (right-hand side). The

boundary of this grain is decorated by a set of cavities which have

linked together. Thus large grains appear to act as preferential

sites for cavity nucleation. Internal microcrack and cavity

nucleation is more widely distributed in tensile than in flexure

samples, because of the uniform stress. Microcracks remain sharp

while growing (Fig. 6a) while cavities are flat or crack-like, and

cover a single grain facet in most cases (Fig. 6b). Failure occurs

by the competitive growth of several microcracks until one becomes

critical. Figure 7 shows the fracture surface of a sample

following creep at 82 MPa. The failure origin is a well-defined

semi-circular crack emanating from a large-grained region. Only a

single crack is visible on the fracture surface (although several

cracks exist away from the fracture surface as shown in Fig. 5).

As the stress is lowered and the lowest stress regime is

approached, the failure origin becomes less distinct (section 3.5).

In AVCO alumina, samples deformed in flexure develop a large number

of microcracks on the tensile face. A variety of crack origins can

be identified, some of which are different from those responsible

for the slow crack growth failures discussed in the previous

section. The microcracks appear to be organized in "shear" bands

(Fig. 8a) that extend under the surface forming a 3D pattern (Fig.
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8b). The number of shear bands observed does not vary significantly

with increasing stress (Fig. 9). Observation at higher
magnifications reveals an extensive array of individuals cavities
besides the larger cracks. In many cases, it is clear that
microcracks have formed through a process of cavity coalescence

(Fig. 10).

The main difference between the two aluminas studied, in this
regime, lies in the amount of microcracking and cavitation

observed, which is much more extensive in the AVCO material. The

higher density of microcracks in AVCO leads to the development of

"shear" bands. The development of these bands through microcrack
coalescence in flexure is illustrated in Fig. 11. This, in turn,

leads to the development of large cracks as described by Dalgleish
et al. 9"10 . These large cracks delineate a sort of slip line field

which becomes the dominant feature in the tensile face of AVCO

samples. Several large cracks develop at the same time and compete
with each other until one of them reaches a critical size and

induces failure.

3.5 Creep Fracture Regime

In this regime, observed only in the tensile specimens of ARCO for

stresses below 55 MPa, the outer surface appears almost featureless
with virtually no cracks (Fig.12-a), despite the very large

elongations involved (27%) 5. High magnification imaging of polished

internal surfaces reveals a large density of cavities (Fig. 13),
whose eventual coalescence leads to the development of microcracks.

The cavities are all intergranular, crack like or with angular
shapes, suggesting surface diffusion or grain boundary sliding as
growth mechanisms.

Fig. 14 shows the fracture surface of a sample crept at 40 MPa. The
fracture origin is clearly defined (Fig.14-b), but several

microcracks have grown independently on this plane. The final

fracture involves extensive microcrack coalescence. The latter is
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illustrated in Fig. 12-b. As two microcracks grow towards one

another but on different planes, additional small microcracks are
nucleated in the field of stress concentration between them. All of
these grow perpendicular to the applied stress axis. However, as
the two main microcracks approach one another, the region between
them undergoes local bending and the local stress axis rotates.
Crack growth in this regime is associated with large crack opening
displacements, as shown in Fig. 15.

Crack propagation is by cavity linkage in the vicinity of the crack
tip. However, the number and size of the cavities is much greater
than in the intermediate stress regime. There appears to be almost
a cavity cloud at the crack tip (Fig. 16). This accounts for the
large crack tip opening displacements, and is further evidence of
the extensive ductility and damage resistance of the material.

4. DISCUSSION

In this section we discuss the various processes which control
failure in the three regimes we have identified. The slow crack
growth regime has not been extensively studied here, and only a few

remarks are warranted. However, the lower stress regimes which

involve failure through a process of widely distributed damage
accumulation will be discussed in greater detail.

4.1 Slow crack grovth regime

In this regime, a single microcrack is able to propagate
sufficiently rapidly to avoid the creep relaxation processes which
occur at lower stresses. Crack propagation is so rapid that very
few, if any, additional microcracks are observed, other than the
one which causes the failure. Thus failure in this regime is crack

growth controlled. Since the cracks grow from preexisting flaws
which vary widely in both type and size, the large scatter in
lifetimes is not unexpected.
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The transition stress between this and the microcrack regime is

essentially independent of temperature, at about 17/180 MPa (steady

state stress). This is seen by comparing the present results for

AVCO alumina with those of Dalgleish et al.10, also on AVCO alumina

(although of a slightly different vintage). The transition stress

is the same for both, despite the higher temperature range

used(1200-13000 C). A similar transition stress is found in the

ARCO alumina. The transition stress is determined almost

exclusively by that required to cause early fracture by slow crack

growth. As noted earlier, this process is extremely stress

sensitive (tf O', with m greater than 40). It is also relatively

temperature insensitive. Thus even though the position of the

stress rupture curve for the microcrack regime does change with

temperature, the transition stress does not.

The very high stress sensitivity of the failure time in this regime

suggests a competition between crack growth and stress relaxation

processes. Crack growth in an unrelaxed solid is controlled by the

elastic stress intensity factor K1 . Models for this process

predict a power-law relationship of the form

A-^ I_ /2_ 1 -/2

where D is the size of the damage zone ahead of the crack. The

exponent a depends on the damage mechanism involved in the crack

growth process; however, it is always in the range from 1 to 3. As

relaxation occurs around the crack however, the crack tip stress

fields and thus crack growth, are no longer controlled by K1.

Instead, a different parameter such as C , the creep analogue to

the J-integral, must be used. Models for creep crack growth in this

regime lead to crack growth relationships of the form
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where P is usually between 1 and 3 and n is the creep exponent.

The time to failure in either of these two regimes can be estimated
by integrating the crack growth rate equations over the range of

expected crack length (i.e. from nucleation to the onset of fast
fracture). In either case, a modest stress dependence is

predicted, in contradiction to the experimental results. The most

likely reason for this is that crack growth is occurring during the
period in which the stress field relaxes from linear elastic to C.

The time required for this has been estimated by Riedel12 for a

stationary crack. It is

K 2 +1) ECti

(n+l)EC*

where E is the elastic modulus and v is Poisson's ratio. An

estimate of this time for the current study gives values of the

order of 5-30 min. However, the transition from the slow crack
growth regime to microcracking occurs after several hours5. The

explanation for this apparent discrepancy lies in the effect of
crack propagation on crack tip stress fields. Finite element• 13

simulations of creep crack propagation indicate that crack tip
stress relaxation is impeded by propagation, while Hui and Riede14

have shown that the severity of the crack tip singularity is
increased by crack propagation. Indeed, for n<3, as is the case

here, they show that the elastic stress field dominates at the
crack tip of a growing crack. Thus a fully relaxed stress field
can only be expected for a stationary crack, or one which is highly
constrained and grows very slowly. This is the case for cracks

growing in flexure at intermediate stresses. The transition from
slow crack growth of a dominant crack therefore represents the
onset of stress relaxation as the rate of crack propagation

decreases.

4.2 Miorocrack regime
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There are a number of significant differences in the behaviour of
the two aluminas studied. Both have a fine equiaxed grain
structure with very similar grain size. However, ARCO alumina has
the greater density and severity of flaws (large grained regions in
particular). We might therefore expect that the low temperature
strength of this material will be lower than that of the AVCO
alumina. On the other hand, the creep resistance of the ARCO
material is considerably greater. This is attributable to
differences in chemical composition (see Table I), and is
consistent with swelling data for the same materials'8 . An
extensive study of creep in alumina3 4 indicates that grain boundary
sliding accommodated by grain boundary diffusion is the dominant
mechanism over a wide range of conditions (1.4 to 310 MPa and 1200
to 15500C). Grain boundary diffusion is also thought to be rate
controlling in the swelling experiments.

The microcracking behaviour also differs substantially between the
two materials. However, the reasons for this are less obvious.
The AVCO material develops a uniform distribution of shear bands
and profuse cavitation on, and for a substantial distance below,
the tensile face of the flexure bars. Dalgleish et al. 9 10 , found
similar results, including the development of shear bands and
failure following strains of between 10-20%. The stress range used
by Dalgleish et al. was the same (170-100 MPa) as ours. However,
the temperatures (1200-13000C) and strain rates (10-5s" ) were
higher. Thus, it appears that the microcrack growth failure regime
extends over a wide range of temperature and deformation rate in
this material.

The ARCO alumina also develops microcracks at intermediate
stresses, but they grow much less readily than in AVCO alumina. In
flexure, samples did not fail even after 18% strain on the tensile
face. This high ductility occurs despite the presence of large
flaws which help to nucleate microcracks. In part, this is due to
crack blunting and bifurcation (see Fig.3-b). In tension, ARCO
alumina does fail after moderate strains. Extensive microcracking
is observed, both internally and surface nucleated, throughout the
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gauge length of each specimen. Microcrack linkage involves a
similar process to that observed in the AVCO flexure specimens.

This suggests that the apparent ductility of ARCO alumina is due

to load shedding around microcracks and stress concentrations.
Indeed, polished internal sections from flexure specimens indicate
that damage extends only a short distance below the tensile

surface.

The development of "shear bands" is much less evident in the ARCO
tensile specimens than in the AVCO flexure bars. This mode of
crack propagation and linkage is peculiar to the bend geometry, and
probably accounts for the much greater times to failure in flexure
than in tension. That is, the development of extensive zones of
damage in shear bands are an effective load shedding mechanism
which is not available in tension.

In summary, we conclude that while there are differences in the
ductility of the two materials studied, their fracture behaviour in
the microcrack regime is broadly similar and involves the same set
of sequential processes - namely, the nucleation and growth of
microcracks from microstructural flaws, followed by linkage and
failure. The propagation of microcracks can be described using
models developed for the growth of isolated cracks under steady

state creep, such as those by Wilkinson and Vitek", at least until
the microcracks approach one another and begin to interact. The
microcrack linkage process is complex. However, this is only
likely to control the lifetime in a constrained geometry such as
flexure. The creep lives in this regime obey the Monkman-Grant
equation with a constant of 0.09. This suggests that the
propagation of the microcracks is controlled by creep deformation.

4.3. Creep Fracture Regime

At stresses between 82 and 55 MPa, in tension, ARCO alumina
undergoes a second transition. This is readily apparent from the
creep rupture and failure strain datas. There is also a detectable
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difference in the damage accumulation process. Below the

transition, relatively little microcracking is evident. Cracks

which do develop grow slowly and are blunt (Fig. 15). Crack growth

is accompanied by broad damage zones at the crack tip (Fig. 16).

This type of behaviour is similar to that found in metallic alloys

which undergo superplastic deformation"s. Moreover, the large

failure strains and a stress exponent close to 2 are all consistent

with superplasticity.

The *ransition in time to failure at 55 KPa is not associated with
any change in creep deformation mechanism. In addition, Monkman-

Grant behaviour is observed both above and below the transition.

There is simply an increase in the Monkman-Grant constant or

failure strain. This is associated with an increase in damage

tolerance.

The observed cavitation and microcracking morphology give some

indication of changes to the mechanism of damage growth with

decreasing stress. In the microcrack growth regime, cavities are

predominantly flat, i.e. crack-like, even in the vicinity of crack

tips. They lie on grain boundary facets, normal to the stress

axis, and quite often occupy an entire facet. As the stress is

lowered, cavities become angular or blocky in shape. This suggests

that cavities grow initially by surface diffusion until they occupy

a full grain facet. At this point their rate of growth slows down

and further growth requires grain boundary sliding (leading to an

angular shape). This is apparently possible only at the higher

strains achieved in the lower stress regime.

As noted earlier, the creep deformation mechanism in A1203 is

thought to involve extensive grain boundary sliding'". However,

sliding is not in itself a self-sufficient deformation mechanism.

It must either be accommodated by deformation (diffusion or

dislocation motion) or else by cavity formation at triple

junctions. Heuer et al.' refer to this latter process as non-

accommodated grain boundary sliding. In the absence of cavitation,

it is the accommodation mechanism which controls creep kinetics16.

278



However, even when void formation does occur, unless it occurs

uniformly at most triple junctions, most sliding is accommodated by

deformation. In the current study, it is apparent that cavitation

is inhomogeneously distributed throughout the material.

The accommodation of grain boundary sliding is most difficult at

regions of locally abnormal grain size, since this requires
diffusional accommodation over a larger distance. Thus cavities

form preferentially on these grains (Fig.5), which act as
nucleation sites for microcracks. As the stress is lowered

diffusional accommodation becomes possible at isolated large
grains and only large grain clusters are able to nucleate
microcracks. Thus the density of microcracks decreases with

stress. The extreme example of this behaviour is found in
experiments on AVCO alumina tested in flexure at 1350OC 17,

unpublished research). After 7% outer fibre strain no microcracks,
and no cavity larger than a single grain boundary facet (about 1

Am) was found. The large grains play no role at this temperature.

Mechanistic models for intergranular cavitation usually assume

that an array of voids sits on a large, flat grain boundary,
oriented normally to the stress axis. This is in contrast with fine
grained materials in which the grain size is comparable to the

cavity spacing. For cavities growing by surface diffusion, the
grain size limits the maximum cavity length 8 . Onre the cavity

covers a full grain facet, further growth requires the development
of negative surfaces curvatures which are only tenable for low
values of the D,6,/Db6b ratio and/or high stress. For alumina, in

the temperature range of concern here, this ratio is close to 1.
This explains why we rarely see isolated cavities longer than a
single grain facet (Figs.6 and 13).

It is possible to estimate the time required for cavities to grow
to full facet size based on current models19 . This is done in
Appendix I. Since there is considerable uncertainty in the value of
the surface diffusivity in alumina, we have obtained an upper bound
on the time by using the lowest reasonable value for the diffusion
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coefficient. We find nevertheless that cavities grow rather quickly

by this mechanism, and reach facet size in less than 0.2 of the

measured life (Fig. 17). In addition, the predicted stress

dependence of this time is stronger (tf ^0"3), than that for the

measured time to failure. Thus, we conclude that surface diffusion

controls the initial growth of isolated cavities up to full facet

size. However, this process does not control the lifetime, in

either the microcrack or creep fracture regimes.

Creep life appears therefore to be limited by the rate of crack

propagation, in both regimes. The increased ductility observed at

low stress is due to the increased resistance to cavity linkage at

crack tips which slows crack propagation. This is evident from

Fig. 16, showing the large number of blunted cavities ahead of a

growing crack. In contrast with the intermediate stress regime,
crack advance appears to occur only after the development of a zone

of intense damage near the crack tip. The development of

widespread damage throughout the material prior to crack

propagation appears to be important to this process, as it enables

cavities to blunt rapidly by grain boundary sliding as the crack

tip approaches. On a continuum level, this process has been

modelled by treating the region ahead of the crack as having a

failure strain ef , not necessarily equal to the macroscopic failure
strain ef, at which the ligament at the crack tip fails . The rate

of crack propagation due to this process is

I n

where e., oo and n are material parameters, D is the size of the

damage zone, and I, is a dimensionless constant. Thus, as the

ductility of the crack tip ligaments increase crack growth slows

down.

Finally, the possible effect of preexisting cavities in the crack

path on crack propagation needs to be addressed. This could result
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in increased crack velocity. However, the effect in this case is

likely to be modest. In particular, there is very little evidence

of tertiary creep in this material. Thus, creep damage does not

affect the creep behaviour.

S. SUMMARY

1. The micromechanisms of creep fracture of 2 commercial hot-

pressed aluminas have been examined in the range of 40 to 200 MPa.

Three failure regimes have been identified.

2. At the highest stress, fracture occurs by the growth of a single

dominant crack, which is nucleated at a processing flaw. The

stress required to produce this mode of failure is insensitive to

temperature.

3. Below a critical stress (about 175/180 MPa), a stationary

stress field is able to develop at microcracks which enable them to

grow more slowly. Failure in this regime involves the growth and

linkage of multiple microcracks at chemical inhomogeneities and

large grained regions. The crack density and morphology depends on

both test geometry and the material. In bending extensive

coalescence of microcracks on different planes takes place through

a shear band type process. This substantially increases the

failure time with respect to tensile testing, thus raising serious

questions about the validity of such tests for lifetime assessment,

even in simple materials.

4. At the lower stresses, damage accumulation is dominated by

isolated cavities growing by a combination of surface diffusion and

grain boundary sliding. The eventual development of microcracks

occurs at large grains and grain clusters in the structure. These

cracks grow through a material containing a high density of

cavities which however blunt by sliding as the crack approaches.

The material becomes very damage tolerant, and can be thought of as

superplastic.
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5. Isolated cavities grow -quickly by surface diffusion to the

limiting size of a grain facet at low and intermediate stresses.
However, the propagation of cracks in a creeping solid controls the
final fracture process. Consequently, failure is strain controlled

at both the intermediate and low stress regimes, in correlation

with the observed Monkman-Grant behaviour. The Monkman-Grant strain
is different in the two regimes.

6. Failure is flaw related in all regimes. These should

therefore be carefully controlled in materials intended for high
temperature applications.
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FIGURE CAPTIONS

Fig. 1: Transmission electron micrograph of the as-received

microstructure for the a) AVCO and b) ARCO materials.

F.g 2: Typical failure origins at high stress - a) an internal

processing flaw (ARCO, tested at 12500C, 200 MPa steady-

state stress); b) a large grain size region (ARCO,

1250-C, 185 MPa); c) another large grain size region

(AVCO, 11000C, 200 MPa); and d) an amorphous surface
deposit (AVCO, 11500C, 200 MPa). 100 1m bars.

Fig. 3: The origins of microcracks include a) chemical deposits

(ARCO, 12500C, 140 MPa, flexure); b) chemical deposits

leading to crack bifurcation (ARCO, 12500 C, 140 MPa,

flexure); c) isolated large grains (ARCO, 12000 C, 125

MPa, flexure); and d) clustered large grains (ARCO

12500 C, 170 MPa, flexure). 10gm bars.

Fig. 4: Extensive microcracking is visible at intermediate

stresses on the side of a tensile specimen of ARCO

deformed at 100 MPa and 12500C.

Fig 5: Internal crack in a tensile specimen nucleated at a large
grain in ARCO at 12500C and 55 MPa.

Fig,: High magnification view of creep damage in an internal

section of a tensile sample fractured of ARCO at 82 MPa

and 12500C a) near a microcrack; and b) typical general

cavitation damage.
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Fig. 7: The fracture surface of a tensile specimen of ARCO tested

at 82 MPaand 12500C.

Fig: Microcracking at intermediate stresses on a) the tensile

surface of a bend bar, and b) on an internal section,

showing the same morphology of damage. AVCO, 100 MPa,

11500C. Stress axis is vertical.

Fig. 9: Extensive microcracking on tensile surface of a bend bar

of AVCO at 11500 C, at a higher stress (170 MPa) than in

Fig. 7. Stress axis is vertical.

Fig. 1Q: Cavitation and microcracking on an internal section of

a bend bar of AVCO,tested at 100 MPa and 11500C. Tensile

face is on the left, with the stress axis vertical.

Fig. I!: Microcrack coalescence through shear band formation is a

major form of crack propagation at intermediate stresses

on the tensile surface of a bend bar. Stress axis is

vertical. AVCO, 100 MPa, 11500C.

Fig,1: Microcracking at low stresses a) on the side of a tensile
specimen; and b) an enlarged view showing the coalescence

process. Tensile axis is vertical. ARCO, 40MPa, 12500C.

Fi : General cavitation damage and the generation of a

microcrack by cavity coalescence, in a tensile specimen

of ARCO deformed at 40 MPa and 12500C. Tensile axis is

vertical.
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Flg. 14: The a) fracture surface and b) the origin of the
microcrak on a tensile specimen of ARCO tested at 40 MPa
and 125 0 0C.

Fig, 15: Microcracking at low stresses on an internal section of
a tensile sample tested at 55MPa. Note the large crack
opening displacement and the blunting of the crack tip.
Tensile axis is vertical. ARCO, 12500C.

Fig. 16: The tip of a crack and its damage zone in an internal
section of a tensile sample of ARCO alumina. 40MPa,
12500C.

Fig. 17: The experimentally determined time to fracture as a
function of applied stress for ARCO alumina in tension,

as compared to predicted failure times by cavitation
under surface diffusion control (Solid line, Equation A-
2).
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IPPENDIX 1. The grovth of cavities by surface diffusion

Surface diffusion controls cavity growth when surface diffusion is

slower than boundary diffusion. This results in flat, crack-like

cavities. Assuming the extreme case of D,6 ,<<Db6b, the void rate of

growth can be expressed asAl:

d. 2 DA., _3 (A-1)

where the material parameters are defined, along with appropriate

values, in Appendix II. This mechanism gives an essentially

constant rate of growth. Thus, the final size of cavities growing

by this mechanism up to the time of fracture can be readily

estimated. Calculations were performed for two stress levels -
10OMPa (for which tf = 19.5h), and 40MPa (for which tf = 249h).

Using the smallest reasonable value for surface diffusivity (D,6s=

4 10"25m3/s) we find that the cavity radius at the time of fracture

would be 4.5 gm at 100 MPa and 3.6 pm at 40 MPa. These values are

actually larger than the observed cavity sizes (compare with figs.6

and 12). This difference is related to the limit imposed by the

grain size on cavity growth. The same type of calculations for

grain boundary diffusion and plastic growth of cavities yielded

very small cavity sizes at the time of fracture.

By integrating eq. (A-i), the time to fracture for cavities growing

by surface diffusion can be estimated Al:

t z. - t, + 1-(1-2fl) D.6& 0 .3  (A-2)
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where t, is the nucleation time (assumed to be zero). We have used
this equation to determine the time for cavities to grow by surface
diffusion across a single grain boundary facet. We have therefore
assumed that the cavity spacing 1 is 6Mm, which corresponds to a
situation of cavities 1.5Mm long (i.e the facet length), separated
by a distance 4 times their length to give a volume fraction at
fracture of 25%). We have again used the lower diffusion
coefficient in order to provide an upper bound on the time of
cavity growth. The results are plotted in Fig.17. They show
clearly that the time required for facet sized cavities to develop
is considerable less than the measured life, even using the most
favourable diffusion coeficient possible.
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APPENDIX ZU. Material parameters

The following values of the material parameters for ARCO alumina
are used in the calculations of Appendix I:

T-1523K, test temperature.
d=l.5gm, grain size.
y-1J/m 2, surface tension.
1, centre to centre cavity spacing, (-6pm in equation A-2).
w= 2.12 10 " m3 , atomic volume (assuming Al-control).
ro=2y/a, initial void size.
fi, initial volume fraction (~0 in equation A-2).

Surface diffusion coefficients are of the form

D88 a - D°' . exp (-Q,/RT)

Several measurements are available for surface diffusivity, as
follows:

TABLE A-I: Surface Diffusion Data for A1203 at 12500C

Q6 (kJ/mol) Da068 (m3/s) D$,6 (m3/s) Reference

650 7.5 10-3  4 10 "2 A2

418 8.6 10-10 4 i0- 4  A3

547 6.0 10 .6 1 10.24 A4

In the calculations we have used the data which gives the lowest
diffusion coefficient, so as to obtain an upper bound on the rate
of cavity growth.
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FiLfg 1: Transmission electron micrograph of the as-received
microstructure for the a) AVCO and b) ARCO materials.



FiQ. 2: Typical failure origins at high stress - a) an internal
processing flaw (ARCO, tested at 1250 0 C, 200 MPa steady-
state stress); b) a large grain size region (ARCO,
1250 0C, 185 MPa).



Fig. 2: c) another large grain size region (AVCO, 11000 C, 200

MPa) ; and d) an amorphous surface deposit (AVCO, 1150°C,
200 MPa).



Fig. 3: The origins of microcracks include a) chemical deposits
(A.RCO, 12500C, 140 MPa, flexure); b) chemical deposits
leading to crack bifurcation (ARCO, 1250 0 C, 140 MPa,
flexure).



Fig. 3: c) isolated large grains (ARCO, 12000C, 125 MPa,

flexure); and d) clustered large grains (ARCO 1250 0C, 170
MPa, flexure; 10pAm bars)



Fig. 4: Extensive microcracking is visible at intermediate
stresses on the side of a tensile specimen of ARCO
deformed at 100 MPa and 1250 0 C.

Fig. 5: Internal crack in a tensile specimen nucleated at a large
grain in ARCO at 1250 0C and 55 MPa.



Fig. 6: High magnification view of creep damage in an internal

section of a tensile sample fractured of ARCO at 82 MPa

and 12500C a) near a microcrack; and b) typical general

cavitation damage.



Fig. 7: The fracture surface of a tensile specimen of ARCO tested
at 82 MPa and 1250 0 C.



Im

Fig. 8: Microcracking at intermediate stresses on a) the tensile
surface of a bend bar, and b) on an internal section,
showing the same morphology of damage. AVCO, 100 MPa,
1150 0C. Stress axis is vertical.



Fiq. 9: Extensive microcracking on tensile surface of a bend bar
of AVCO at 11500 C, at a higher stress (170 MPa) than in
Fig. 7. Stress axis is vertical.



Fig. 10: Cavitation and microcracking on an internal section of
a bend bar of AVCO,tested at 100 MPa and 1150 0C. Tensile
face is on the left, with the stress axis vertical.

V

Fig. 11: Microcrack coalescence through shear band formation is a
major form of crack propagation at intermeaiate stresses
on the tensile surface of a bend bar. Stress axis is
vertical. AVCO, 100 MPa, 1150 0 C.



Vl -V

Fig. 12: Microcracking at low stresses a) on the side of a tensile
specimen; and b) an enlarged view showing the coalescence
process. Tensile axis is vertical. ARCO, 40MPa, 1250oC.



.

Fig. 13: General cavitation damage and the generation of a
microcrack by cavity coalescence, in a tensile specimen
of ARCO deformed at 40 MPa and 12500C. Tensile axis is
vertical.



#!

FiQ. 14: The a) fracture surface and b) the origin of the
microcrak on a tensile specimen of ARCO tested at 40 MPa
and 1250 0 C.



Fig. 15: Microcracking at low stresses on an internal section of

a tensile sample tested at 55MPa. Note the large crack

opening displacement and the blunting of the crack tip.

Tensile axis is vertical. ARCO, 12500C.

Fig. 16: The tip of a crack and its damage zone in an internal
section of a tensile sample of ARCO alumina. 40MPa,

12500C.
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Fig.f1: The experimentally determined time to fracture as a
function of applied stress for ARCO alumina in tension,
as compared to predicted failure times by cavitation
under surface diffusion control (Solid line, Equation A-
2).
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STUDY OF THE FRACTURE PROCESS IN MORTAR WITH LASER

HOLOGRAPHIC MEASUREMENTS

by A. Castro-Montero', R. A. Miller2 and S. P. Shah3

ABSTRACT

Center notched plate mortar specimens were loaded in tension. A multiple sensitivity

vector holographic setup was developed to record several deformation stages during the

stable crack propagation range. The three sensitivity vector setup enabled the calculation

of both crack opening displacements and strain fields around the crack trajectories. An

image analysis system was used to isolate the interferometric effect from the sandwich

holograms resulting in fringe patterns with perfect contrast. Image analysis was also used

as a faster, more accurate and more consistent method for fringe count.

After evaluation of the holograms, the existence of tensile forces transmitted through

the crack faces was associated to the presence of tensile strain behind the crack tip. Existing

cohesive crack models were evaluated base on experimental crack profile measurements.

A crack length dependent cohesive crack model with a bilinear closing pressure was

proposed. A definition of the fracture process zone (FPZ) is proposed based on the

difference between experimentally observed and linear elastic fractre mechanics (LEFM)

strain fields.

INTRODUCTION

The fracture of concrete is characterized by formation and propagation of fracture

process zone. Several phenomena have been associated with fracture process zone including

microcracking around the crack tip, localization and strain softening and crack bridging

(often also termed aggregate interlock). A key to a better understanding of fracture

mechanics of concrete is the accurate observation of fracture process zone on a microscopic

s, e.

I Graduate Research Assistant, Department of Civil Engineering. Northwestern University, Evanston, Illinois 602082 Assistant Professor of Civil and Environmental Engineering, University of Cincinnati. Cincinnati, Ohio 45221.
3 Professor of Civil Engineering and Director of the National Science Foundation Center for Advanced Cement Based Materials,

Northwestern University, Evanston, Illinois 60208

309



This paper will examine the cohesive crack model which proposes that fracture in

concrete can be modeled using linear elastic fracture mechanics (LEFM) and applying a

closing pressure to the crack faces. Using experimentally measured crack opening

displacements, four closing pressures proposed in literature were tested as were the basic

underlying assumptions of the cohesive crack model.

In the technique described in this paper, three simultaneous holograms were taken

by illuminating the specimen from three different directions. In addition, digital image

analysis techniques were developed to accurately evaluate wide field in plane deformation.

The results of the strain field calculation obtained using this newly developed technique for

mortar center notched plate specimens are discussed in this paper.

HOLOGRAPHIC INTERFEROMETRY TEST

Each interference pattern represents the component of the displacements onto the

sensitivity vector k (Abramson, 1981). In order to obtain a two dimensional displacement

field (in plane and out of plane), in principle, two interferograms are required. However,

since there is no sign associated to the fringe counts a third interferogram is necessary.

These requirements are discussed in more detail by Castro-Montero, Shah and Miller,".

Figure 1 is a schematic view of the optical set-up with three illumination directions (R,L and

C) used for this study.

For each load step a different hologram is recorded from each illumination direction

(holograms R,L and C).

FRINGE COUNT

The holographic interferograms were acquired into an image analysis system using

a slow scan high resolution camera. The image is represented by a 512x512 2-d array of

integers, each corresponding to the average light intensity across an element area referred

to as pixel (Picture Element). The size of a pixel determines the spatial resolution.

The bright and dark bands of the holographic fringes can be represented as a binary

image. In a binary image the pixel intensities assume only two values, ON (or 1) for perfect

white and OFF (or 0) for perfect black.
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Figure 2 is the enhanced interferometric image in which the intensity value is zero

for dark bands and one for bright bands. Further image processing allows to assign intensity

values to each fringe corresponding to the fringe order.

A pixel P is selected on the binary image (Fig. 2). A flooding procedure which assigns

an arbitrarily selected intensity value (Y) to all the pixels connected to pixel P is performed.

Thus, all the pixels on the band containing P are assigned the intensity value Y. The same

procedure is repeated for consecutive bands. The intensity value Y is incremented by one

for each band.

Figure 3 shows a fully processed interferogram in which same intensity values

correspond to same fringe orders. Note that there is a different intensity level for each half

a fringe (i.e., different intensity for dark and bright bands). The fringe count between any

two points can now be easily obtained by computing half the difference of the corresponding

intensity levels (e.g., fringe count between A and B in Fig. 3 is (90 - 65)/2 = 12.5).

Even though the use of the image analysis system results in very fast fringe counts,

speed is not the main advantage of this technique. The isolation of the interferometric

effect on the holographic images and the binarization process result in accurate and

objective fringe counts. The gradual change in intensity from a dark to a bright band make

it very difficult to obtain consistent fringe counts when conventional (by hand) methods are

used.

EVALUATION OF HOLOGRAMS

Crack Profiles.

For the computation of the crack opening displacements (COD) the modified Nelson

and McCrickerd (Nelson and McCrickerd, 1986, Miller, Shah and Bjelkhagen, 1988) method

was used. This method assumes the out of plane motion to be negligible (i.e. COD is the

main component of the displacement) and that displacements are small. Since the direction

of motion is assumed, one hologram is sufficient. Equation 1 gives the magnitude of the

COD in terms the fringe count and the geometry of the optical set-up.
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nxCOD = (1)

4 coso cos,/

where:
COD = Crack Opening Displacement. Displacement of one point on the

crack face with respect to the point across the crack.
n = fringe count from a point on the crack face to the point across the

cross the crack.
= angle between illumination direction and sensitivity vector (k)
= angle between direction of motion and sensitivity vector (k)

Typical crack profiles are shown in Fig. 4. Miller, Shah and Bjelkhagen 2' showed that

short cracks have profiles which are basically the same as LEFM profiles. Longer cracks

have profiles which are much thinner than LEFM crack, suggesting that applying a closing

pressure to the LEFM profile may provide the correct final profile.

Strain Fields.

Fringe counts relative to the left face of the crack, or the symmetry line for points

beyond the crack tip, were taken at every point on a 3 in x 3 in (76 mm x 76 mm) grid (1.5

in on each side of the crack line and 3 in in front of the notch tip) every 1/8 in (3 mm)for

all three holographic images (R,L and C). A computer program was used to calculate the

displacement of every point relative to the left face of the crack by locating the intersection

point of the holodiagrams corresponding to each illumination direction. A third order best

fit polynomial was obtained for the displacements along lines perpendicular to the crack

line. For the sections crossing the crack a different polynomial was obtained for the left and

right side of the crack. The strain field was obtained by differentiation and was evaluated

from x = -I in to x = + 1 in every 1/8 in (3 mm) at every cross section, where x is the distance

from the crack line and is positive to the right. Figure 5 shows the strain field (c.) around

the bottom crack for crack lengths of 1.375 in (35 mm), 1.875 in (48 mm) and 2.25 in (57

mm), corresponding to 1324 lb (6.0 KN), 1461 lb (6.6 KN) and 1601 lb (7.2 KN) of applied

load. The strain fields shown in Fig. 5 include only the measured additional strain after

the initial preload state.
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In general, a high strain (> 100me) region can be found around and in front of the

crack tip with a maximum value of approximately 300 lie. Behind the crack tip there is a

zone of negative strain which suggests relaxation of tensile strain with respect to the initial

preload stage. Also, note that there is a gradual descent of the strain level behind the crack

tip as opposed to the sharp drop corresponding to the LEFM solution.

ANALYSIS OF THE CLOSING PRESSURE MODELS WITH K =0

Cohesive zone models based on the Dugdale-Barrenblatt approach of placing a

closing pressure on the faces of a discrete crack could be used to account for the non-

linear effects of the fracture process zone (FPZ) and aggregate interlock. Hillerborg, et.

al. 13 proposed a cohesive crack model to account for the complex fracture mechanisms in

concrete. Figure 6 is a summary of the closing pressure relationships studied. The following

four closing pressures were chosen for this study: An exponential closing pressure proposed

by Gopalaratanam and Shahf'J; a bilinear curve proposed by Roelfstra and Wittmann"; a

trilinear closing pressure proposed by Liaw, Jeang, Hawkins and Kobayashi'; and a linear

relationship proposed by Cedolin, Iori, and DeiPoli tl.

The applied load and the criterion K, = 0 were specified and then the necessary crack
length was computed as indicated by Castro-Montero, Shah and Miller8 '. This was done

applying the experimental load to the FEM mesh and then propagating the crack length 3

mm (1/8 in) at a time.

Many previous studies calibrate the closing pressure vs. w relationship by comparing

the theoretically predicted load-displacement relationship vs. the experimental values. Such

a comparison for one of the specimens tested during the holographic study is shown in Fig.

7. The holographically measured notch tip opening displacements are compared with those

obtained from the finite element analysis and with four different closing pressure vs. w

relationships. It is observed that all four closing pressures give essentially the same load

vs. NTOD curves. This means that a unique closing pressure Vs. w relationship can not be

asserted when a discrete displacement measurement is used for calibration. A similar

observation was also made when the computed crack length (K, = 0) is compared with the

holographically measured crack length.
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The authors believe that a better evaluation of the different closing pressures results

from comparing the experimental crack profiles vs. predicted crack profiles. In order to

provide an objective comparison, an error definition was proposed. A positive error means

the closing pressure was not large enough to close the LEFM crack profile down to the

holographic profile while a negative error means the closing pressure was too strong and

closed the LEFM crack profile down too much.

In Fig. 8 it can be seen that there is a substantial difference between the observed

and predicted crack profiles regardless of the closing pressure vs. w relationship used.

A CRACK LENGTH DEPENDENT COHESIVE CRACK MODEL

A more objective method of determining closing pressure vs. crack opening

relationship is not to assume any a priori shape. This was done using a Green's function

type of approach. The necessary closing pressure distribution to match the holographically

measured crack profiles was calculated. Three observations are pertinent from this analysis:

(1) the closing pressure vs w relationship may not be invariant with respect to crack length,

(2) a bilinear curve may be sufficient to approximate the closing pressure vs. w relationship

and (3) as noted before, closing pressure vs w relationship appears to be a function of

compressive strength.

Based on these observations a bilinear relationship was determined using the crack

length dependent model proposed by Cook")'. It was assumed that for crack lengths shorter

than a given length d there is no closing pressure. For longer crack lengths a bilinear

function was used. A finite difference Levenberg-Marquardt algorithm was applied to

optimize the closing pressure function for each specimen. A proposed bilinear closing

pressure, based on the optimization procedure is shown in Fig. 9.

For the proposed bilinear closing pressure there is a good prediction of the crack

opening displacements although the crack lengths are over estimated including a segment

close to the crack tip with either small or null predicted crack opening.

Jenq and Shah and Cook, et. al. suggested that K, did no, need to be equal to 0. The

above bilinear closing pressure was applied and K, corresponding to the experimentally

observed crack length was calculated. When the calculated K, values include closing

pressure, an essentially constant value for the specimens with the same compressive strength
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is obtained regardless of crack length. In contrast, when cracks are assumed to be traction

free (LEFM) the value of K, increases with crack length. Thus, it seems that the cohesive

type of model can explain the R-curve type of response reported for quasi-brittle materials.

Figure 10 shows the relative error plots and typical profiles corresponding to the calculated

value of K,. Note that the predicted profiles match well with the measured ones.

DEFINITION OF FRACTURE PROCESS ZONE

In Fig. 11, the differences in strain fields between the LEFM solution and the

experimentally measured values are shown. It is arbitrarily assumed that the differences are

significant when they exceed the strain value of 60 A e. Positive differences mean that the

tensile strain predicted by LEFM was higher while the negative values mean that the LEFM

predicted lower tensile strain than the holographically measured values. The zones marked

A in Fig. 11 are the regions where the LEFM solution predicts tensile strain values of 60

pe or more higher than those measured holographically. Note that zone A remains

essentially constant regardless of crack length. Since this zone is relatively small and does

not change with crack length a model based on modified LEFM may be a possible

approach. Zones B, with negative values, typically found behind the crack tip show that the

relaxation of the observed strain is 60 ge less than that in the elastic solution. Zones B can

be defined as the wake of the fracture process zone (WFPZ) and they enclose the area

where extensive microcracking has been developed and tensile forces are still transmitted

through the crack. Behind this zone, the fracture process approaches a traction free

condition.

Figures 12 shows the difference between the predicted response using the bilinear

closing pressure and the holographic measurements. Note that there is a good correlation

of the results and the zones with significant deviation from the experimental results are

practically eliminated.

CONCLUSIONS
a. Sandwich hologram interferometry with multiple sensitivity vectors can be used to

measure crack opening displacements and strain fields in mortar specimens under
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tensile stress. When holographic interferometry is used to measure Mode I crack

opening displacements the effect of out of plane motion should be taken into

account.

b. Digital image analysis facility provided a faster, more consistent and more accurate

method of fringe count than the manual method.

c. There is a region of high tensile strain that moves with the tip of the propagating

crack. The material behind the crack tip experiences strain relaxation. However, the

gradual nature of the strain relaxation demonstrates the existence of tensile force

transmitted through the crack faces.

d. Zones of nonlinear behavior can be located by computing strain field deviations form

the linear elastic solution.

e. A bilinear closing pressure vs. COD cohesive crack model has been proposed to

predict both crack profiles and strain field, fully characterizing the material behavior.
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FIGURES

Figure 1. Holographic set up with three sensitivity directions.

Figure 2. Typical holographic interferogram after isolation of interferometric effect.

Figure 3. Fully processed interferogram for automatic fringe count.

Figure 4. Typical crack profiles.

Figure 5. Holographic strain fields.

Figure 6. Comparison of closing pressures.

Figure 7. Load vs. Notch Tip Opening Displacement (NTOD).

Figure 8. Crack profile comparison.

Figure 9. Proposed bilinear closing press -,.

Figure 10. Crack profile comparison for proposed bilinear closing pressure.

Figure 11. Difference between experimental and LEFM strain fields.

Figure 12. Difference between experimental and LEFM with bilinear closing pressure

strain fields.
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Figure 2. Typical holographic interferogram after 
isolation of interferometric effect.
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THE FRACTURE PROCESS ZONE IN CONCRETE

SIDNEY MINDESS
Department of Civil Engineering
University of British Columbia
2324 Main Mall
Vancouver, British Columbia V6T IW5
Canada

ABSTRACT. A number of different experimental techniques have been used
to try to determine: (1) whether a process zone exists in concrete; (2)
if it does, what its dimensions might be; and (3) whether it is a fund-
amental material property. From an extensive review of the literature,
it would seem that not only the apparent size of the process zone, but
its very existence, are strongly dependent on both the specimen
geometry and on the methods of measurement. It is difficult to avoid
the conclusion that the process zone is not a fundamental material
property for cementitious composites.

1. Introduction

When a brittle material containing a crack is subjected to stress, the
stress distribution ahead of the crack has the form shown in Fig. 1.
That is, for a sharp crack, there are very high stress concentrations
in the immediate vicinity of the crack tip. Because of the heterogene-
ity of concrete at both the macrostructural and microstructural levels,
including discontinuities and pre-existing microcracks, there will be
many highly localized areas of relative weakness in this highly
stressed zone. Therefore, as a crack propagates in concrete, one would
expect a great deal of microcracking to occur, largely (but not exclu-
sively) in this highly stressed region. This region of discontinuous
microcracking ahead of the continuous (visible) crack is generally
referred to as the fracture process zone.

It must be emphasized, as will be seen below, that not all inves-
tigators have found such a process zone. However, if there is a true
fracture process zone, or even simply random microcracking associated
with crack propagation, it is important to try to quantify the amount
of damage that occurs during the fracture of concrete.

There are a number of conceptual problems to be dealt with in any
discussion of fracture process zones in concrete. First, as Thouless
(1) has pointed out (Fig. 2), instead of looking for a process zone
ahead of the crack tip, one can as easily consider a bridging zone
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Figure 1. Stress field ahead of a crack tip.

behind the crack tip. Either assumption leads to similar results when
applied to the problem of crack tip propagation. Second, it appears to
be impossible to define, in an unequivocal fashion, the "true" crack
length in concrete (2); the position of the tip of a propagating crack
is uncertain. Since, as mentioned above, there are already pre-existing
microcracks in virgin concrete, it is necessary to distinguish between
these and the additional microcracks caused by the imposed stresses.
At the moment, it is not possible to do this. Third, investigators
such as Bazant (3] are not really concerned with the size of the frac-
ture process zone as determined by direct observation. They are simply
interested in an elastically equivalent crack system, which yields the
correct energy dissipation and correct stress vs. displacement rela-
tionships in a concrete specimen. Finally, it has been shown [4,5)
that the crack length appears to vary across the width or thickness of
the specimen. Thus, surface crack measurements cannot accurately indi-
cate the extent of the process zone. In view of these complexities, it
is then not surprising that there is a great deal of controversy about
the process zone in concrete.

In this paper, some of the experimental techniques used to identi-
fy the process zone, and the results of these studies, will be
discussed.
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Figure 2. Schematic illustration of a crack tip, and either the (a)damage zone, or (b) bridging zone, after Thouless [1].

2. Experimental Techniques
Over the years, a great many different experimental techniques have
been employed to try to find the extent of the process zone. These maybe divided roughly into three categories:

Surface techniques:
- optical microscopy
- scanning electron microscopy
- electric resistance strain gauges
- photoelastic methods
- interferometry techniquesMeasurements involving the specimen interior:
- X-ray techniques
- mercury penetration measurements
- dye penetrants
- infrared vibrothermography
- ultrasonic pulse velocity
- acoustic emission
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Indirect methods:
- compliance measurements
- Demec gauges
- numerical methods

As indicated above, these techniques tend to measure rather different
properties of the material. Some involve only the surface character-
istics of the specimen, and some include an indication of what is
happening in the interior of the specimen. Still others consider the
system as a kind of "black box", where the physical details of the
cracking are not considered directly, as long as an assumed crack
system yields the correct stress vs strain and/or energy relationships.
Thus, it is sometimes difficuilt to reconcile the very different
conclusions that various researchers have come to with regard 'to the
process zone.

It must also be noted that some techniques involve first loading
the specimen to some stress or strain, but then unloading the specimen
before the cracks are examined. Others, however, permit observations
of the cracking while the specimens are still under load. Since the
fine cracks tend to close and become virtually invisible on unloading,
it is clear that valid measurements can only be made with those tech-
niques which do not involve unloading the specimens before measurements
are made.

3. Surface Techniques

The earliest attempts to examine cracking in concrete, such as the very
extensive studies carried out at Cornell University using both
optical microscopy [6,7] and X-ray techniques [6,8,9] were not
really sensitive enough to reveal the presence of a process zone.

However, more sophisticated techniques have also not always
revealed a process zone. On the one hand, Tait and Garrett [10], using
in situ observations of cracking in pastes in the sample chamber of a
scanning electron microscope (SEM), did identify a process zone in
the vicinity of the crack tip, 1-4 m in extent. Baldie and Pratt [11]
used backscattered electron imaging on polished sections of cement
paste. They found that crack growth seemed to occur by first the
formation, and then the coalescence of microcracks ahead of the crack
tip, but they identified "only a limited formation of ar actual process
zone".

On the other hand, extensive in situ observation in an SEM by
Mindess et al. [12-14] showed no evidence of a process zone. Using
similar techniques, Diamond and Bentur [15] concluded that while there
was crack subdivision and branching near the visible crack tip, "there
is no physical distinction corresponding to separate lengths of
'straight, open crack' behind a crack tip and 'process zone microcrack-
ing' ahead of a crack tip".

Using a replica technique in conjunction with an SEM, Bascoul
and his co-workers [16,17] also found extensive microcracking near the
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crack tip, but not a well-defined process zone. They concluded [17]
that "Nothing allows... (us)... to think that there is a damaged zone
ahead of the macrocrack except at the beginning of crack branching".

Other, more sophisticated optical microscopy techniques have also
been contradictory. Eden and Bailey [18] used diffuse illumination
with a reflected light microscope, and concluded that stable crack
growth involves the formation of a process zone which grows to some
characteristic size before the crack becomes unstable. Stroeven [19,
20] however, used fluorescent oils to help delineate the cracks in
concrete. Typical results are shown in Fig. 3 [19], which represents
the crack pattern of an axial section of a grooved concrete specimen
subjected to direct tension, slightly beyond the ultimate load. While
there is very extensive cracking, much of this was already present in
the virgin specimen as a result of shrinkage. Stroeven found that the
cracks developed, and grew together, in a stochastic way. Certainly,
there is no "process zone" in evidence.

Still other techniques have yielded different results. Electric
resistance strain gauges have been used to identify relatively large
process zones [21,22], of the order of 10 to 15 mm wide and lengths of
up to 100 mm. However, these "process zones" were defined in terms of
the surface strain exceeding, typically, 3x10 -4 rather than by direct
observation of cracks. In spite of these rather large dimensions, the
process zone could not, surprisingly, be identified by optical methods.
Photoelastic techniques were also ambiguous; Van Mier [23] and Van
Mier and Nooru-Mohamed [24] could not define a fracture process zone,
while Stys [25] did find one.

Perhaps the most sensitive of the surface techniques for identify-
ing cracks in concrete are the interferometry techniques: holographic
interferometry and speckle interferometry. These technqiues can
achieve a sensitivity down to about 1 )im. Even with this sensitivity
in measuring surface displacements, however, the results are uncertain.
Most studies, as with electric strain gauges, define the process zone
in terms of some limiting strain [26-28]. Thus, a fairly large process
zone can be identified ahead of the crack tip, as in Fig. 4 [29], even
though it cannot be defined optically. On the other hand, Ferrara and
Morabito (30] could not with certainty specify a well- defined process
zone, while Regnault and Bruhwiler [28] could not locate, or even
define, the tip of the tension-free crack.

Similarly, white light Moir6 interferometry was used to
identify rather large (20-100 mm) process zones [31-33]. Again, one
wonders why zones this large could nto be observed directly by micro-
scopic techniques.

4. Measurements Involving the Specimen Interior

In principle, measurements involving the interior of the specimen, i.e.
the bulk of the material, should provide a better indication of the
extent of the process zone. Unfortunately, since we cannot directly
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Figure 3. Manually copied crack pattern of axial section of two-sided
grooved specimen subjected to direct tension slightly beyond
the ultimate, after Stroeven [19).

see the interior of a specimen indirect means of locating cracks must
be used for this purpose.

As indicated above, X-ray techniques (6,8,9] are not really sensi-
tive enough for this purpose. Mercury penetration measurements (34)
can only indicate crack widths and volumes, but cannot define the loca-
tion of the microcracked region. Similarly, dye penetrants (35-3?)
can reveal the shape of the crack front, but cannot reveal the extent
of the process zone.
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Infrared vibrothermography is based on the principle that heat
is generated when there is energy dissipation in a material subjected
to vibratory excitation beyond its stable reversible limit. This tech-
nique has been used [38] to observe progressive damage in a concrete
specimen under compressive loading. This is an averaging technique,
which shows the global damage within the specimen; whether this can be
equated with the microcrack patterns that occur during the growth of a
single crack under monotonically increasing loading is not certain.

Ultrasonic pulse velocity measurements have long been used to
try to assess damage in concrete. This too is an averaging technique,
which is affected by the total damage (or cracking) between the trans-
ducers. Extensive work using this technique carried out by Alexander
and his co-workers [39-43] showed that the main crack would not propa-
gate until a microcracked zone had developed in front of it, typically
about 1/2 of the residual beam depth in size. Similarly, Chhuy et al.
[213 found a damage zone about 100 mm long ahead of the crack tip. On
the other hand, Berthaud [44,45) found it difficult to deduce the size
of the process zone using ultrasonic pulse velocities, and Reinhardt



and. Hordijk [22] concluded that such measurements do not lead to a
geometrical description of the process zone.

Acoustic emission (AE) techniques have been used very exten-
sively to try to assess the nature of the process zone. AE events
occur when transient elastic waves are generated by the rapid release
of energy that occurs upon cracking, and can be measured using piezo-
electric transducers (46]. Maji and Shah [47-51], in a very detailed
series of tests, found that beyond the peak load most of the AE events
occurred near the crack tip; they deduced a process zone extending
about 25 mm ahead of the crack tip, and a longer distance behind it
(indicating ligament connections behind the visible crack tip). AE
source locations for mortar specimens, compared to the crack tip
location as determined by holographic techniques are shown in Fig. 5
[52]. Others have obtained similar results using AE techniques
[21,53,54].

Berthelot and Robert (55-57] also carried out very extensive AE
tests. They found that a damage zone appeared to grow in size as the
crack progressed, reaching lengths of up to 160 mm and widths of up to
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Figure 5. AE source locations for mortar specimen, compared to the

location of the crack tip found using holographic
techniques, after Maji, Ouyang and Shah [52].



120 mm. Similar results were obtained by Bensouda (58]. Again,
however, it is surprising that such extensive damage zones are not
readily apparent by microscopic observation.

Results by Rossi [59] and Rossi et al. [60] indicated that there
was not a clear transition from the uncracked concrete to the process
zone. Overall, a review of the AE literature suggests that the results
depend upon the specimen geometry, the sophistication of the instrumen-
tation, and the method of analysis.

5. Indirect Methods

A number of indirect methods have also been devised to estimate the
size of the proccss zone. The earliest of these is the use of
compliance measurements. That is, from measurements of specimen
stiffness (and the location of the visible crack tip) the extent of ti.e
process zone can be "guesstimated". Using such techniques, Karihaloo
and Nallathambi [61,62] found process zones in the range of 20-40 imn,
depending on the specimen size. Compliance techniques were also used
by Kobayashi et al. [63], who concluded that the process zone continued
to grow as the crack extended, without ever reaching a constant value.
In the view of this author, however, because of the impossibility of
separating the development of a process zone from slow crack growth,
compliance measurements cannot provide a good estimate o' the size of
the process zone.

An interesting variant on compliance measurements is the use of
multi-cutting techniques. One such technique [64] involves the
cutting of thin strips of the specimen normal to the crack path and
measuring their bending stiffness as a function of distance from the
visible crack tip. In another version of this technique [65-67], the
bridging stresses transferred within the process zone are removed by
careful cutting along the plane of Che original crack, and determining
the compli&nce of the specimen at each step as the cutting progresses
through the process zone. This permits an estimate of the process zone
size. Hu and Wittman [65-67] found process zones of up to 43 nm long,
but concluded [65] that "the length of the fracture process zone is not
a material constant but depends on the actual stress gradient due to
the limited specimen geometry".

Dem. - gauges can be used to determine the average strains in
specimens ier fairly large gauge lengths. Clearly, this too can only
average whatever is taking place within the gauge length. However, it
has been found that the use of these gauges can provide similar results
to those found from ultrasonic pulse velocity measurements [39,42].

Finally, numerical methods (i.e., studies on 'numerical'
rather than 'real' concrete) have also been used to try to deduce the
size of the process zone [e.g., 68-70]. Clearly, however, the results
of such methods depend entircly on the a priori assumptions made in
setting up the numerical models, and this cannot provide any definitive
answers.
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6. Conclusions

From the above brief review, it is clear that the different test tech-
niques provide different information. Some investigators have found no
process zone at all; others have found that the process zone size
varies from only a few mn to over 500 mm, as summarized in Table I. It
would appear, then, that this issue is still far from being resolved.
Each different techniques, it seems, is capable of examining only a
limited part of the problem. (Indeed, it reminds the author of the old
story of a group of blind men trying to describe an elephant.) At

Table I. Fracture p:ocess zone dimensions determined usin.'
different techniques

Process Zone Dimensions (mnm)
Ref. Technique
No. Length Width

61 Compliance measurements 20-40
63 Compliance + replica 114
64 Multi-cutting 30-40
65-67 " 12-42
12 SEM no process zone found
15 " no process zone found
10 1 1-4
21 Strain gauges 100 10
22 " 14
25 Photoelasticity 5
39-43 Ultrasonic pulse velocity 20-160
21 " 100 10
47,49 Acoustic emission 25 ahead of tip

>25 behind tip
53 " 105
21 1 100
54 " 500
56 " 160 120
58 " 160 120
59,60 i 10
27 Interferometry 20-40
29 " 50
30 " no process zone detected
28 " zone exists, 1/2 aggre-

but dimensions gate size
not definable

32 Moir6 interferometry 100
33 " 20-30 10
70 Numerical techniques 40-80
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present, one can only conclude that the process zone is not a funda-
mental material property, but depends on the specimen geometry, and the
method of measurement.
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Abstract

The brittle fracture of structural ceramics, as analyzed from

crack propagation studies under conditions of slow, quasi-static

crack growth, is described. The experimental results allow one to

partition ceramics in to those which have a constant toughness and

those which exhibit increasing toughness upon crack extension. The

latter effect, known as R-curve behavior is addressed in greater

deta-l for long and short cracks in alumina and MgO-partially-

stabilized zirconia. Correlations between microstructure, R-curve

behavior and strength are outlined.

1. Introduction

In recent years, important progress has been achieved in the

fields of material development and mechanical failure characteri-

zation of structural ceramics /I/. The knowledge gathered and

accumulated in-service experience enabled a continous widening of

the field of application. On the other hand, reliable use of

ceramics still demands, for any individual case, knowledge about

the interdependencies between application, loading conditions and

damage mechanisms.

From the materials and mechanic21 point of view, characterization

of the potential failure mechanisms plays the key role. Speci-

fically, reliable data are needed to avoid catastrophic brittle

fracture. Furthermore, information about subcritical crack growth,

thermal shock, fatigue, corrosion, creep and high temperature

che::ical stability are important. Often, the failure of ceramic

components is complex because more than one of the forementioned

damage mechanisms may act simultaneously. 5



crack growth can be achieved for materials with steeply rising R-

curves over a much wider range. The experimental R-curves of long

cracks presented in this section were obtained from single edged

notched bend (SENB), double cantilever beam (DCB) and double

torsion (DT) specimens (Fig. 6). In section 4, R-curves for short

"natural" surface cracks on the tensile surface of bend bars are

discussed.

In the SENB-geometry, the depth of the narrow (a - 70 Jim),

straight-through notches varied between an/W = 0.2 and 3,1/W = 0.8,

where w is the width in the direction of crack growth. It should

be noted that sharp starter cracks generated by the bridging

rethod /16/ are not appropriate in the case of R-curve behavior

because controlled crack propagation starts at an already high

resista-ice level.

The technique used for the propagation studies of long cracks is

illustrated in Fig. 7. Load (P), load-point displacement (d) and

crack length (a) (monitored with a travelling microscope) were

measured simultaneously to generate P-d-a curves; as shown in the

lower part of Fig. 7. In addition to continuous experiments under

displacement or cross head-position control, tests with several

intermediate unloading loading sequences can be run to gain

insicght into the underlying fracture mechanisms and/or to provide

further information for the evaluation of resistance data. Such

P-d c-rves are shown for a coarse grained A1203 (Fig. 8) and a

high :oughness Mg-PSZ (Fig. 9). Unloaded, both ceramics reveal a

residual displacement (dr), but they significantly differ with

respect to the hysteresis upon reloading. Due to frictional wake

effects of rough serrated crack surfaces, hysteresis is very pro-

nounced in A1203 /17/. Also, the residual displacement can be

increasingly reduced by stepwise renotching from notch to crack

tip. When the renotch approaches the crack tip, no further dr is

left in A1203 /17/. In Mg-PSZ, the decrease in dr depends on the

width of the renotch cut /18/, as well. The residual displacement

only diminishes if the complete transformation zone is machined

away.
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2.2 Increasing toughness (R-curve)

In the case of increasing toughness, the fracture stress can

increase despite crack growth (Fig. 2b), if toughening overcompen-

sates the strength decrease from crack growth. Ceramics which

exhibit this crack propaqation behavior are, to a certain extent,

"flaw tolerant".

To date, R-curve behavior was predominantly investigated in ZrO 2-

containing ceramics /9, 10/ and in coarse grained oxide ceramics

/11, 12/. Fig. 5 shows R-curves from measurements using thin,

compact tension (CT-) like specimens, which highlight the strong

transformation toughening effect of zirconia. The R-curve behavior

of both monolithic ceramics is discussed in greater detail in

sections 3 and 4.

Although it is out of the scope of this paper it should be

mentioned that, in recent years, increasing efforts are under way

in materials development to implant R-curve behavior in a large

varieuy of ceramics with initially constant toughness by utilizing

secon phase toughening. Materials of specific interest are

ceramic-ceramic composites /13/ with whisker-, fiber-, platelet

reinfi;rcment and ceramic-metal composites /14/.

3.1 Measurement and Evaluation of Crack Resistance

In principle, crack propagation studies of ceramics can be perfor-

med with almost all of the testing geometries used in linear

elaszic fracture mechanics. However, for stable, quasistatic crack

extension, specific conditions relating crack growth-associated

changes in crack driving and resistance forces must hold /15/. The

change in crack driving force (dG/da), which depends on the energy

stored in the specimen and the testing device, has to be less than

dR/da (< 0 for constant R) to avoid crack instability. When dG/da

< dR/da holds, crack propagation is possible only if an additional

amount of external work is supplied. In accordance with these con-

siderations, constant toughness materials need a long starter

crack (deep notch) which may reduce the available range of crack

propagation quite significantly. On the other hand, controlled
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mics /6/. In a crude approximation, increases of strength and

toughness are positively correlated and the data indicate that a

proportionality holds. Using the assumption of surface flaws (Y

1,3 /7/) a critical flaw size of about 60 pm could be deduced from

the strength-toughness relationships.

However, such an interpretation of Fig. 1 should not be stretched

too far, as will be shown by the crack propagation studies des-

cribed in the following sections. Seperating ceramics intD those

which have a constant toughness upon crack extension and those

which exhibit a rising crack length-dependent crack resistance

(R-curve), some general aspects of fracture are outlined next.

2.1 Constant toughness

Upon loading, ceram.cs typically deform linear elastically until

catastrophic failure occurs at crack instability (Fig. 2a) as

described by Eq. 1 with the assumption of a constant toughness. In

fact, quasi-static crack propagation studies reveal that, for many

ceramics, toughness does not change over a wide range of crack

extension. Some examples are shown in Fig. 3 for fine grained

mate: Kals: Si3N4 and SiC.

According to Eq. 1, the strength of ceramics can be increased by

reducing the critical flaw size. Furthermore, narrowing the flaw

size d4istribution helps to increase reliability (decrease in

scatter of strength). The correlation between flaw size and

microstructural dimensions urges the processing of fine grained

ceramics. This concept of materials development has been sucess-

fully applied in recent years /8/. However, a more careful control

of the individial processing steps is necessary to avoid material

inhomogeneities which can act as stress concentrators and cause

premature failure. Fig. 4 shows a large graphite inclusion in HIP-

SiC and a pore in a Si3N4 body. Both were critical flaws for these

fine grained non-oxide ceramics in bending strength tests.

The defect sensitivity of fine grained ceramics and their inherent

failure potential through local stress concentrations or short

overloads, favours an alternative concept of ceramic development

which is based on R-curve behavior.
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The present paper expands on previous review articles on
structural ceramics /1-4/ and focusses on aspects of brittle
fracture revealed through crack propagation studies. When using a

Griffith-type crack instability criterion, ceramics can be divided
into two groups; those which have a constant toughness and those
which exhibit increasing toughness upon crack extension. The

latter effect, known as R-curve behavior, is addressed here in
greater detail for alumina and MgO partially-stabilized zirconia.
Correlations between microstructure, R-curve behavior and strength

are outlined.

2. Crack instability and toughness behavior

Brittle fracture of ceramics usually is assumed to be determined

by pre-existing flaws which become unstable upon loading, thus
causing catastrophic failure of the material. Using an energy
concept /5/, the point of crack instability is given by the

equation

1 E - ROf ac (1a)
Y a0

which relates fracture stress (Of) and material resistance (crack
resistance force (R)) to the critical flaw size (ac). The Young's
modulus (E) and the parameter Y, which considers che finite size
of components (specimens) with respect to flaw size, are included
in Eq. la as well.

In the case of linear elastic fracture, the well known equation

1 KIC
Of = Y - c (Ib)

holds, where KIC is the toughness parameter (critical stress
intensity factor), which yields a desciption equivalent to Eq. la.
In this paper, K and R formulations are used interchangeably,

assuming that KIC ' qE'R.

Using Eq. lb, the strength (fracture stress in bending) is plotted
in Fig. 1 as a function of toughness for various commercial cera-
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Which R-curve determination methodology to utilize when analysing

mechanical tests, particulary whether residual displacements must

be incorporated is currently an unresolved topic of discussion.

Most often, the evaluation procedure follows a linear elastic com-

pliance approach, neglecting residual displacement effects. In the

case of quasi static crack growth, G = R, and

p2 dC
R = -(2)2B da

where B is the width and C the compliance of the specimen.

The three possible methods used in applying Eq. 2 are:

A) from experimental P-d-a data, the experimental compliance

function Cexp (aexp) is taken

B) a theoretical compliance function Cth (ath) is used after cal-

;gfating ath by equating Cex p and Cth

C) the experimental crack length is combined with a theoretical

compliance function (C = Cth (aexp)). (Note that this meth:od

is equivalent to standard procedures of stress intensity .,
factor determination.)

These three methods can generate different crack resistance

curves. For example, due to the wake interaction (discussed in

section 3.2.1), alumina is less compliant than theoretically pre-

dicted. Thus, the crack length (ath) calculated with method B, is

shorter than the physical crack length (aexp) measured with the

travelling microscope.

If residual displacement is relevant for the specimen behavior

during crack propagation then Eq. 5 has to be modified and

extended /15/, which gives

p2 dC 1 d(dr)
R = - + - P (6)

2B da B da

where C is a compliance determined from unloading-loading

sequences and dr is the residual displacement on unloading.
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Interestingly, in alumina, all 4 analysis methods yield almost the

same R-curve over a wide range of crack extension (SENB: 2-3 mm)

before significant deviations occur. The details of this compa-

rison will be reported elsewhere /17/. For Mg-PSZ, the initial

part of the R-curve is shifted towards a higher resistance if the

contribution of residual displacement is considered. The curves

from all ev&luation methods then approach the same plateau value

after about 2-3 mm of crack extension.

(Note that the long crack R-curves shown in this paper were

derived either from compliance method A (Mg-PSZ) or B (A1203 ,

predominantly in SENB geometry).)

3.2 R-Curve behavior

Controlled crack propagation studies using the standard specimens

of LLFM allow one to trace the crack-microstructure interaction

over a long range of crack extension. Thus, the full potential of

a ceramic to resist crack growth can be explored with a long crack

R-curve. Some features of the fracture- (resistance-) behavior of

A1203 and Mg-PSZ resulting from such crack propagation studies are

discribed in the following two subsections, respectively.

3.2.1 Alumina

In pure alumina, R-curve zehavior is more pronounced in coarse-

grained than in fine-grained materials (Fig. 10). In summarizing

the various R-curve results from different testing geometries and

grain sizes, a general shape can be deduced, which is given by an

initially rising curve that plateaus out after a certain crack

extension. Note, that, in Fig. 10 the specimen size (w = 7 mm) was

not large enough to exhibit a plateau-regime. A detailed analysis

of the grain size dependence reveals an interesting behavior of

the R-curves. Fine grained material starts from a notch tip with a

higher initial resistance (RO ) than coarse grained A1203 but expe-

riences almost no increase, unlike the coarse grained material.

This crossing of R-curves, which is confirmed by recent work of

Lawn and coworkers /18/, gave rise to some confusion in the past
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when K7C values determined from different testing geometries (e.g.

SENB and DT) were compared. DT neasurements determine the plateau

regimes of R-curves /11/ and, therefore, the KIC values so

calculated are relatively high. Also, the grain size dependence is

inverted compared to KiC-experiments with crack instability in the

initial part of an R-curve, e.g. short cracks in SENB.

Crack propagation studies also probe the severe differences in R-

curve behavior between the two modes of microfracture (Fig. 11).

Nearly pure, coarse-grained alumina fractures predominantly inter-

granularly and exhibits a steeply rising R-curve. However, the R-

curve of a material comparable in grain size but with more glassy

phase and transaranular microfracture, is comparatively shallow.

Although both curves start at about the same Ro-level, they differ

significantly in their slope.

The i-.formation gained from crack propagation studies in alumina

stroncly favour wake controlled crack tip shielding as the basic

R-curve mechanism /19, 20/. Our current understanding may be

summarized with the aid of the schematic model in Fig. 12.

Alumina, due to anisotropy in the thermal expension coefficients,

contains residual stresses between neighbouring grains. They

depend on grain size and are large for pure coarse grained

material. However, when a glassy grain boundary phase is present,

the stresses are assumed to be lower. The residual stresses are

relieved by the formation of a damage zone of microcracks which is

triggered by the stress field of a macrocrack. The microcracks

force the macrocrack to generate a rough, tortuous crack surface.

In addition, the microcracks became unconstrained when the

macrocrack advances, thus generating a layer of dilated material

along the crack surfaces. The crack surface roughness and dilation

give rise to frictional crack bridging effects which shield the

crack tip from the external stresses. The maximum length of such a

crack shielding wake zone is reached when the local crack opening

displacement is larger than the interaction length of the bridging

elements. A constant, steady state size of the wake zone, which

obtains thereafter, corresponds with the plateau of the R-curve.

In summary, it is important to note that both microstructural pro-

perties and crack/specimen geometries determine the actual shape

of an R-curve. Quantitative details for the model of the R-curve

behavior of A1203 are reported elsewhere, /17/.
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3.2.2 MgO partially stabilized Zirconia

The effectiveness of transformation toughening, the major

toughening mechanism in zirconia-containing ceramics, is manifest

in the strong R-curve behavior of Mg-PSZ; with plateau toughnesses

measured for long cracks of up to 18 MPa 4m /21/.

In Mg-PSZ, tetragonal precipitates transform in the crack tip

stress field to monoclinic symmetry. The frontal transformation

zone thus generated has no effect on the crack tip field /24/.

However, upon crack extension, the constraint on the process zone

unloads in the wake, giving rise to residual dilatation-associated

stresses and crack shielding. A steady state level, which

corresponds with the plateau regime of the R-curve, is only

attair.ed after substantial crack extension (2-3 mm in high

toughness Mg-PSZ /21/).

In thE simplified case of supercritical transformation, i.e. all

particles within the transformation zone fully transform, the

achieveable plateau toughness depends on the size (h) of the zone

/23/. A Raman microprobe technique has been developed recently to

measure h very accurately /24/ and the zone can be detected easily

on pchished surfaces (Fig. 13) due to the surface uplifting

Lriggered by the dilatation accompaning the t-m transformation.

Nevertheless an exact correlation between the microstructure, zone

size, and the R-curve shape cannot be specified to date /l/ yet.

Toughnening can be optimized by special heat treatments of Mg-PSZ.

Again, crack propagation studies with R-curve measurement probe

the effectiveness of a given heat treatment.

Results for a 9.7 mole % Mg-PSZ are shown in Figures 14 and 15.

After solution annealing at 17000 C and rapid cooling, samples were

annealed at 1400 0 C for various times up to 10 hours. Additionally,

some samples were annealed at 1100 0C for up to 2 hours. Figure 14

shows the change in the precipitate microstructure due to the

1400cC heat treatment. The subeutectoid, 1100 0 C annealing did not

change the precipitate size.
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The R-curves determined after annealing reveal substantial diffe-

rences, not necessarily at the beginning (Ro-value), but, with

increasing crack extension (Fig. 15).

The R-curve results indicate that, for the given Mg-PSZ,

toughening is optimized by annealing at 1400 0 C followed by 11000 C.

The toughness in such samples changes from KR = 4 MPa 'm in the

solution annealed material to Kplateau = 12 MPa qm after the treat-

ment.

4. R-curve behavior and strength

The crack propagation studies and R-curve results presented in the

previous section are very useful for material development in tzrm

of better understanding the basic mechanisms. However, the high

toughness values often cited for modern structural ceramics, which

correspond to the plateau of long-crack R-curves, are not really

relevnt for most structural applications. After failure of

ceramic components, no fracture causing cracks of millimeters in

lengt are observed usually. Typically, critical crack sizes are

at least one order of magnitude smaller. In order to determine the

strength-toughness relationship of ceramics, crack propagation

studies should focus on failure relevant short cracks rather than

long cracks.

To observe and analyse the propagation of short cracks, stable

growth must be achieved. This is possible when R-curve behavior

obtains, as was shown by using the energy balance in section 3.1.

To date, only few R-curve measurements for A1203 and Mg-PSZ with

short, failure relevant surface cracks, are published. The short

cracks either originated from indentation /12/ or initiated

"naturally" on tensile surfaces of bend bars during increasing

loading /25, 26/.

Figures 16 and 17 show surface cracks generated by stepwise

loading of bend bars in coarse grained A1203 and high toughness

ZrO 2 , respectively. In both ceramics, "natural" surface cracks can

grow from some tens of microns to several hundred microns. In

orde- to calculate the toughness from such cracks, the crack
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profile must be determined. Dye penetrant techniques indicate that

the surface cracks are almost semi-circular in A1203 , whereas,

serial sectioning in Mg-PSZ reveals that the cracks advance much

further at the surface compared to depth (ratio = 5/1). With

appropriate Y-functions, determined using the crack profile, KR is

determined in a straightforward manner from Eq. lb.

The resulting short crack R-curves are plotted for comparison with

those of long cracks in Figures 18 and 19.

The short crack R-curves start considerably lower in both ceramics

and the plateau toughness level is not reached before instability.

Unlike LEFM tests, where the long cracks are forced to initiate

from a notch tip, the "natural" surface flaws originate from local

hetercgeneities, e.g. pores or larger grains. Often, more than one

microcrack forms on the tensile surface. In this case, the one

with the shallowest R-curve slope becomes unstable first. The

fracture stress at instability corresponds to the bending strength

as determined from fracture tests with low loading rates. Thus,

under technically relevant loading conditions, specimens or compo-

nents cannot utilize the full potential of R-curve behavior.

Clearly, toughness or resistance data referring to the plateau of

long crack measurements overestimate the values pertainent for

application of a ceramic material.

5. Conclusions

The quasi-static, controlled crack propagation studies reported

here enable one to characterize the fracture behavior of struc-

tural ceramics in more detail than one parameter descriptions.

Furthermore, deeper insight into the correlation between micro-

structure and mechanical behavior is possible.

Long-crack fracture tests using the standard specimens of LEFM

reveal if toughness (equivalent: crack resistance) is a material

property constant or increases with crack extension (R-curve

behavior). The full potential of a microstructure for toughnening

is enabled.
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However, for failure relevant fracture characterization and a

better understanding of strength-toughness relationship, crack

propagation studies have to focus on short cracks. In the case of

pronounced R-curve behavior, stable crack growth of natural sur-

face flaws can be achieved experimentally by stepwise loading. AS

the resulting R-curves are significantly lower than those from

long cracks, it must be emphasized that long crack plateau

toughness values, often quoted in literature, may overestimate the

toughness applicable in components considerably.
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Fig. 13: Surface uplifting (between arrows) showing the
transformation zone around crack in Mg-PSZ. The zone
between the notch and first arrow was annealed out at
1000*C after precracking
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A REVIEW OF EXPERIMENTAL METHODS TO ASSESS DAMAGE
DURING FRACTURE OF ROCK, CONCRETE AND REINFORCED COMPOSITES

Hideaki Takahashi
Research Institute for Fracture Technology
Faculty of Engineering, Tohoku University

Aramaki Aoba, Aobaku
Sendai/980, Japan

ABSTRACT. For quasi-brittle materials like rock, concrete and their
composites it is usually adopted that a term of fracture process zone is
used as a measure of fracture damage during loading. To assess the
fracture damage quantitatively, a significance of acoustic emission and
u trasonic testing have been reviewed.

1. Introduction

For quasi-brittle materials like rock, concrete and advanced
cementitious composites it is usually accepted that a term of fracture
Frocess zone is commonly used as a measure of fracture damage during
z:ading. However, no physically reasonable explanation of fracture

rr::ess zone is not made uptil now, because there is no experimental
tezhnique to characterize formation and extension of the fracture
zrocess zone quantitatively. To investigate the fracture process at the
microscopic level, three kinds of NDE methods have been currently
developei at Tohoku University. These three techniques are photoelastic
coating method, acoustic emission rating method and ultrasonic time
difference method. The detail of these techniques are described in Refs
[1-5, 8].

2. Intense Microcracking and its Observation by Photo-elastic Coating
Technique [1]

2-1. Materials and Photoelastic Coating Technique

The materials examined in this study are rock (a granite with an
average grain diameter of 1.3 mm), graphite (a nuclear-grade graphite
designated PGX) and mortar. The compositions and mechanical properties
of these materials are shown in Table 1.

Rectangular bend specimens (100 x 30 x 28 mm) were cut using a
diamond wheel saw. A notch with a root radius of 50 Um was machined
into each test specimen.

A transparent ferroelectric ceramic, (Pbo.91 , La0.0g) (ZrO.64,
Tic. 34 )03 was used as a photoelastic-coating material (designated PLZT).
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TABLE i-COMPOSITION AND MECHANICAL PROPERTIES OF THE MATERIALS USED

Young's Tensile Fracture
Modulus Strength Toughness K,, -

Mate,,al Composition EM(Pa) o.,(MPa) J,.(JIm3) (MPs inl/)

Granite Quartz (38 percent), Feldspar (56 percent), Mica (6 percent) 19.4 3.6 66.0 1.15
average grain size: 1.3 mm

Graphite Coke (70 percent), Binder (Pitch) (30 percent) 6.0 7.2 72.0 0.66
max. grain size of coke: 1.0 mm

Mortar Cement (42 percent), Sand (42 percent), Water (16 percent) 40.4 3.2 11.5 0.68
max. grain size of sand: 2.5 mm

The material was obtained in the form of a circular disk, 50-cm diameter
and 10-mm thick. Thin sections of the PUT were cut from the disk. The
foil thickness was in the range ll0-150pm. For light-reflection
purposes, an optical mirror was formed on one plane of the ceramic plate
by evaporation of chromium. The prepared thin foil was glued with
c-anoacrylate to the surface of the three-point-bend specimens. A load
f- ame was designed to permit the specimen to be loaded by high
cz)-pliance springs on the stage of a polarizing microscope.

Fracture-toughness tests were conducted on the three materials
azcording to the ASTM standard test method using an Instron testing
machine. Single-edge-notch specimens were tested in three-point
bending.

The averaged load versus J-integral relationship obtained from
fracture-toughness tests was used as a calibration to determine the load
_evels of specimens tested for strain-field observation in terms of J.

The calibration-test for the PLZT was carried out in terms of the
> lationship between the birefringence Ln and principal-strain
cifference L.

The photoelastic sensitivity of the PLZT, defined as Ln/E is
1.75, which is two or three orders of magnitude higher than common
.hotoelastic-coating materials such as epoxy and Araldite.

2-2. Results and Discussions

Typical test records of load versus load-line displacement (P-VL
are given in Fig. 1. The three materials exhibit different amounts of
nonlinear deformation. The ratio of the secant specimen compliance at
peak load to the initial compliance, Csec/Cini, can be taken as a
measure of the degree of the nonlinearity (see Fig. 1). The ratio
values are 2.22, 1.90, and 2.88 for mortar, graphite, and granite,
respectively, indicating that the granite has the highest nonlinearity
of deformation.

An example of the interference fringe pattern formed around the
notch tip is illustrated for the granite in Fig. 2. The principal-
strain difference is determined from the fringe observation using the
calibration diagram. Figure 3 shows the distribution of the principal-
strain difference along the notch plane at various load levels, where r
is the distance from the notch tip, and the J integral is chosen to
indicate the load conditions. It is noted that the fringe shape around
the notch tip and the strain distribution shown in Figs. 2 and 3 are
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quite different from that observed for linear-elastic materials. The
deviation from linear-elastic-deformation behavior is considered to be
due to the formation of an extensive microcrack zone ahead of the notch
tip.

In order to characterize the strain field within the intense
microcrack region, the principal strain difference under several
different load conditions is plotted against the nondimensional distance
in Fig. 4, where the distance from the notch tip is normalized by the
length parameter J/ault. It is noted tha the strain distribution around
the notch tip is well characterized by the J integral, irrespective of
load levels, and the logarithmic plot leads to the following empirical
relation.

whzere -1. and m are material constants. Looking at the normalized
strain distribution, we see that the value of m is close to 1.0 for the
t..ree materials, and thus the principal-strain difference ahead of the
nr.tch tip has the singularity of r-1 , equivalent to that of perfectly
rigid plastic materials.

We now examine the extension behavior of the intense microcrack
region. Here the length of intense microcrack region w is taken as the
distance from the notch tip where the principal-strain difference
exceeds 760 li. Figure 5 shows the development of the intense
:icrocrack region w as a function of J. The intense microcrack region
ncreases linearly with increasing J integral at low load levels. Note

tnat the intense microcrack region extends rapidly with increasing load
E.t the point indicated by an arrow. The abrupt increase in u. is
interpreted to be due to the effect of macroscopic crack growth. In
t-.is study, the J-integral value at the knee point is defined as the
critical J-integral value at the onset of macroscopi crack growth, and
:.t is denoted by JIC-

As described above, the crack-tip strain fields in the brittle-
microcracking materials show the singularity of r-1 , unlike the strain
field expressed by the stress-intensity factor K. From this observation
the J integral was selected to characterize the strain fields in this
study. The fact that the crack-tip strain field and the extension
behavier of the intense microcrack region can be characterized by the J-
integral supports the use of the JIC criterion for a valid measure of
the fracture toughness for these materials.

3. AE Evaluation of Fracture Damage in Rock and Concrete

3-1. Acoustic Emission Characteristics and Determination of Fracture

Toughness Evaluation Point in Rock [2, 3]

The load versus displacement record (P-VL) is shown in Fig. 6 for a
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small three point bend specimen (iTBend). The granite exhibits
s:.gn-_ficant nonlinear deformation behavior well below the maximum load.
The energy of the AE signal, EAE for a 10 s interval at various stage of

the bending test is plotted against the load-line displacement. AE
s-agnals are detected at early load level. The onset of AE occurs
Z--proximately at the load level at which the load-displacement curve
Lecomes nonlinear. The AE activity increases with increasing load and
i nurnber of AE signals are emitted prior to the maximum load point. it
can be considered from the AE behavior that the development of numberous
r-:crocracks around the initial notch tip precedes the macrocrack

.Fropagation in the rock. In order to correlate the AE behavior with the
fracture process, the EAE was summed with respect to load level, and the
accumulated AE energy ZEAE is shown as a function of J-integral value in
T;.g. 7. The ZEAE-J curve can be divided into two regions. The first
region, of lower slope, denotes the microcracking with little acoustic
activity. The second region of the curve has a high value of slope, and
consists of AE events of much higher anplitude than those detected
earlier in the test.

To study the correspondence of the AE characteristics shown in Fig.
7 with the microfracture process at the crack tip spectral analyses of
7-X signals and microscopic observations at the notch tip were made. it
's known that the measurement of the frequency spectrum of AE signals
enables the identification and separatinn of individual sources of AE
events. The spectral analyses were made on recorded AE signals and the
variation in frequency content of the AE signals with respect to load
level was examined. The results showed that AE signals observed during
the tests can be classified into two groups, type I and II. This
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fied AE events men used for microscopic

observation

classification is made on the basis of the difference in low frequency
content of AE signal. AE signals of the type II has a predominantly low
frequency content in the audible range compared to the type I signal.
F.:A amplitude of the type II signal is observed to be generally larger
t:an that of the type I. In Fig. 8 is shown the load level at which
t-.e classified individual AE event was detected during three-point bend
-=t of the specimen. AE signals of type I with small peak amplitude
are emitted at the early loading stage, and then the type II signals
Emart to appear as the load is further increased. The occurrence
rates of type I and II signal are seen to be approximately the same
-:ter the maximum load level. Similar trend in the emission behaviors

has been observed for other tests. It is noted that the abrupt increase
in the activity of type II signal corresponds to the knee point as shown
in Fig. 8.

Microscopic observations of the notch tip region was made using
thin sections prepared as follows. Four three-point bend specimens with
identical dimensions(lTBend) were tested for this observation. As shown
in Fig. 9 two specimens were loaded to just beyond the load level which
c¢rresponds to the JiAE point, and the loads just below the JiA level
were applied to the remaining specimens. The predetermined load was
applied to the inverted specimen in such a manner that the precrack
-.outh was located at the top, and maintained while adhesive
(cyanoacrylate) was injected to fix the local opening of fractured zone.
After the adhesive was cured the specimen were unloaded. The loaded
specimen were sliced off in sections normal to the notch plane, polished
and thinned to a thickness of about 20 Um. The thin section was then
examined under a polarizing microscope. No crack initiation was
-;entified up to the loading stage of J = 90 J/m2 , although some
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microcracks were observed around the notch tips. However, when the load
was further increased to just above the JiAE point crack growth was
found to occur from the notch tip throughout the specimen thickness.
Based on the observations of the present study, the microfracture
processes- in the rock can be summarized as follows. On loading the
prenotch, a few isolated microcracks are formed due to the heterogeneous
nature of rock. On further loading the intensity of microcracking
increases and deformation behavior around the crack tip region becomes
nonlinear. Finally, macrocrack extension occurs because of the
coalescence of microcracks in the nonlinear zone. The acoustic emission
characteristics observed in the present experiments support the general
picture of the microcrack-controlled fracture processes described above.

Let us discuss the source mechanisms of the classified %E events.
The sequence in occurrence of type I and II signals suggests that the
emission of type I signal is associated with the formation of
microcrack. The coalescence of microcracks is expected to generate
e'astic stress waves having larger energy since the remaining ligament
1ktween microcracks possesses stronger linkage than the neighborina
microcrack sites. Hence the intensive microcrack coalescence can be
considered to produce the AE signal of type II. The critical event for
r.acroscopic crack growth is the intensive coalescence of microcracks
and linkage with the prenotch tip throughout the specimen thickness. We
can say that the abrupt increase in the type II activity can pinpoint
the critical stage of the notch tip region, and thereby the acoustic
emission characteristics as shown in Fig. 7 is used to determine the
fracture toughness evaluation point. The J-integral value corresponding
to the knee point is hereater called JiAE.

--Z. Effect of Concrete Strength on AE Behavior [4]

Concretes having different compressive strength have been tested in
th~s study. The mix proportions are given in Table 2. Normal
F:rtland Cement was used for all specimens. The maximum size of the
coarse aggregate was approximately 20 mm. Water/cement ratio and

Table 2 Mix proportions of Concretes

unit weight (kg/u')

sample I/C s/an water cement sand gravel silica w.r.a.::
(%) (%) -tune (cc)

A 80 4 2 188 813 721 1008 0 0
B 47 42 160 840 721 1006 so 12.1
C 2 5 4 2 111 444 721 1008 111 41.2

a s : sand, a : sand + aggregate
,, w.r.a. : water reducing agent
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Table 3 Specimens dimensions of SR. CT and SPB specimens

specimen loading ao W B Bn Ws L St
confituration (BE) (mm) (mm) (m) (m) (mm) (mm)

SR wedge splitting 90 170 100 60 2 - -

SR wedge splitting 105 170 100 60 2 - -

CT tension 40 100 100 60 5 - -

CT tension 50 100 100 60 5 - -

CT tension 60 100 100 60 5 - -
SPB bending 50 100 100 - - 840 780

s S : span

contents of cement and silica-fume were controlled to obtain different
strengths. In order to fix the slump, furthermore, water-reducing agent
was added into high-strength concrete (B) and very high-strength
ccncrete (C). Each mixture was cast in the rectangular mold for 3 PB
specimen and in cylinder mold for SR specimen. All specimens were cured
tc=eher with the same condition (wet curing). The tests were carried
out in wet state on the twenty-eight days of curing time. The average
compressive strengths at this curing time were approximately 30, 60 and
95 MPa, respectively.

The geometry of the SR specimen tested is used, together with
those of two rectangular specimens; CT and 3PB. The length-to-diameter
ratio is set to be the same as that of the conventional compressive test
specimen. The specimen dimensions are listed in Table 3. An
artificial notch with width of 2 nun was machined into each specimen
using a diamond wheel saw. CT specimens were made from remaining halves
c: tested 3PB specimen.

The wedge splitting method was employed for fracture tests of SR
specimens. The load was transmitted to the specimen by means of a
wedge and roller bearings. The two roller bearings are fixed to a load
box, which was placed on the top of the sample. A clip-gage was located
across the load application points, and used to measure and control
load-line displacement during tests.

AE signal were classified into eight threshold levels according to
the amplitude. AE event distributions plotted on load versus load-line
displacement curve of CT test are shown in Fig. 10. In all specimens,
the AE occurrence started below the maximum load and continued beyond
the maximum load. AE activity during the softening process shows the
clear tendency to increase with increasing strength. It can be
considered that AE signal was caused by nucleation and propagation of
microcrack.

The evidence suggests that a following AE parameter, high energy AE
rat.o, Rn, can be used as a measure of microfracture resistance.

I Naii-A
Rn -
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where INAE is AE cumulative count and ZNHIAE is cumulative count
of AE signal with high energy. AE having energy above 1.6 V was taken
as a high energy AE signal. It is considered that the frictional
sliding due to crack bridging may produce high energy AE signals.

4. Application of AE to Fracture Evaluation in Advanced Concrete
Composites [5]

4-1. Materials and Paper-laminate Composites

Table 4

(a) Starting materials for calcium silicate matrix

Silica Lime Cement Gypsum Pulp fiber Water
(wtZ) P/IM(wt) W/lI(wt%)

63 17 17 3 1 or 2 70

M=$S I ea+Lime+Cement+Gypsum

(b) Laminated spacing, molding
process and specimen size

Lumina ted Fi ber Specimen
spacing content Molding sizeS in triz(WOOD (mm)

-.a'W 0

2. 3 Cas t 40x0%60
1. 01.7

S1.4__ _ _

Divi der 1.1

Fig. 11 Section for fracture .0 2. 0 Press 2OaBKzIBO

toughness test o.1s

Paper sheet laminated cementitios composite was made as shown
Table 4 (a)(b).

Notched three point bending test with AE method was carried out on
the divider section as shown in Fig. 11. On the press molded
samples, also the crack growth resistance were measured by un-loading
compliance method. The notch cut by carbon blade on the center of the
beam had the tip of 0.15 mm curvature radius and one-third depth of the
sample width. An AE sensor was glued near the tip of notch. A clip
gage for the measurement of the displacement was attached on the
shoulder of the notch.
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4-2. Results.

A typical compliance curve is shown in Fig. 12. The deformation
behavior at un-loading and reloading of calcium silicate/woodpulp
laminates, was irreversible similar as that of rocks and concretes.
Therefore, the determination of compliance by 10 % unloading
measurement, which established to examine the compliance of these
laminates. In the case of these laminates, as the deformation at
reloading had linear behavior, a gradient at unloading as shown dotted
lines in Figure 12 was adopted.

The normalization load-deformation curves of all samples are shown
in Fig. 13. The displacement on the shoulder of the notch (Vg) was
measured. On the normalization for different sample size, the load was
provided by the bending strength, and the deformation by Vg/Vgcal.
Vgcal. was calculated by formulas obtained by Tada (6];

J integral values at maximum load, Jpmax was more than 30 times
larger than that of non-laminate. It is difficult to examine the
tendcency of Jpmax values with laminated spacing because the maximum load
Fint could not be determined as shown in P-Vg curves. Figure 14 shows
tne relationship between the J integral value and the crack growth
length obtained by unloading compliance method on the press-molding
laminates (J-R curves).

Khan et al. [7] proposed an AE rating parameter Tac by using AE
events energy after the onset of the crack growth and fracture energy,
and reported that Tac was an effective parameter evaluating the fracture
touchness in various alloys. Tac is defined as follows;

Tc EAE/ B
4J

where 7 EAE is AE cumulative energy and AJ is the difference of J
integral value after the on-set of the crack growth. The relationship
between Tac and the crack growth resistance LJ/ILa obtained by un-loading

• 11I

3CL .. -. -- - - -. .

P 6 ./ D: L5 v~mm

0 Q2 o. 0.6 0.8
Load point dispIOCCw'Wflt mm

Fig. 12 Typical compliance monitor- VgV"

ing curve Fig. 13 Load-deformation curves
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compliance method (Figure 14) is shown in Figure 15. This figure shows
the similar relationship to alloys. Also in calcium silicate/woodfiber

comosites, therefore, the crack growth resistance can be predicted by

'ac.
The AE event counts distributions plotted on the load-deformation

curves according to threshold level were illustrated in Figure 16.

These representative illustrations are the nonlaminate and the
laminates of 2.3 nn spacing. In the case of laminates, most AE events
had low energy in the Area II, while many AE events had high energy in
the nonlinear behavior area (Area III). The curves had the load tremble
which was caused by the pull-out and/or the failure of the fibers in the
non-linear behavior. It was observed that high energy AE events
occurred at every short load-drops. Therefore, it is considered that
most high energy AE events were caused by the full-out and/or the
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failure of the reinforcing fibers.
AE parameters, high AE relative frequency RE and RN were defined

respectively as follows;

2: E 1. GV-AE

Z E^i
and

Z N 3. SV-AE

: N

where ZEI.6VAE is AE cumulative energy over 1.6 V threshold level and
ZN1.6V-AE and ZNAE are AE cumulative count over 1.6 V threshold level
and AE cumulative count, respectively. The relationships between RE and
crack growth resistance and between RN and crack growth resistance is
sh-own in Figure 17. The relationship between RE and crack growth
resistance had large dispersion with the difference of AE event rates in
low middle threshold levels, because the lower energy AE events were
treated lightly in energetic evaluation. On the other hand, RN
inz:reased with increasing of the crack growth resistance. It is
suggested that RN is an effective parameter for reinforcement effect,
whether laminating or non-laminating. Figure 18 shows the relationship
between RN and the laminated spacing. RN clearly increased with
aecreasing of the laminated spacing. In other words, it is suggested
tnat the crack growth resistance increased with increasing of lamination
number. From the other aspect of this figure, RN values of the
laminates asymptotically approached to RN value of the non-laminate with
increasing of laminated spacing. RN obtained by AE measurement can be
used as a measure of effectiveness of lamination reinforcement.

1.01
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5. Application of Ultrasomic Timing Method to Fracture Process zone On-
line Monitoring in Rock (8]

Labuz et al.[9) and Swanson [10] investigated an extension behavior
of the fracture process zone by use of ultrasonic attenuation method,
where there exists no quantitative relationship between UT data and
process zone size.

In this section the usefulness of ultrasonic timing method for
monitoring the formation and extension of the fracture process zone in
granite is described. The specimen geomery used is a CT type of 50 mm
thickness and 125 mm width.

During the fracture toughness test, the travel time of longitudinal
wave prapagation through the specimen is monitored using 500 kHZ
transduser as shown in Fig. 19. Based upon an experimental calibration
curve of travel time and prenotch length, the extension of fracture
process zone can be estimated. Figure 20 shows a typical load-
displacement curve and variation of travel time At, where the increase
cf Lt corresponds directly to the length of process zone extension
(:lp). In addition, compliance macrocrack monitoring was also made.

Srin; Loading

'~"~~oL~ce P~be2.5

2.0 - .2.0-
'w" .. -

-1.5 1.5

Fracture
Process .0

Zone " 1.0 1.0

-r 0 ..5o
I Receivin; Proof "

0 50 100 150
Fig. 19 Illustration of 0 s 1 ISO

ultasni tm-Load line displacement 6 U-, ,Multrasonic tim-

ing method Fig. 20 Load-displacement curve
and time-difference (At)

30,,)A

120[-_

< Specimm No.
10 SM-261

& Fig. 21 Macrocrack ex-
A A-IT tension (Aa) vs

V19_ , process (lp)
0 10 20 30 40 50

Al.mm
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Figure 21 is a relationship between
fracture process zone length (Alp)
and the amount of crack growth
(La). It is clearly shown that
althugh there is a non-linear
relation of Alp - Aa at an initial

loading stage, a linear Alp - Aa
relation exists during steady
propagation stage. I

Atkinson proposed an idea of [' -
"cloud " of microcracks and macro-
crack extension to discuss an exten-
sion behavior of the fracture -

process zone quantitatively, as a
shown in Fig. 22, where the actual
extension of physical macrocrack Aa
(.a) and the length of fracture
process zone (Alp) are indicated. " . .

This illustration is support- - .,I

ed by experimental finding that
there is nonlinear Alp - Aa at the
beginning of loading, whereas there Alp
exists the unique Alp - Aa relation
during the macrocrack extension, as Fig. 22 Sketch of macrocrack growth
shown already in Fig. 21. and process zone extension

(modification of the picture
6. Concluding Remarks. by Atkinson [11])

Although there exists several experimental techniques like AE or UT
reviewed in this paper to evaluate fracture damage in brittle-
z.a.crocracking materials, it is still lacking to understand a
quantitative relationship between a macrcsecopic crack extension and
microscopic cracking behavior. Extensive efiorts for development of
reasonable and quantitative NDE procedure to evaluate microcracking
behavior in brittle materials are highly encouraged.
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A review of some theories of Toughening
mechanisms in Quasi-Brittle materials

C. Atkinson
Department of Mathematics, Imperial College, London

May 3, 1990

1 Introduction

To properly account for fracture processes in quasi-brittle materials such as
ceramics. rocks or fibre reinforced composites consideration must be given
in the first place to the propagation of discrete cracks. However these

materials have many inicrocracks either inherent in the microstructure or
created by the inhomogeneous nature of the induced stresses of applied or
residual loads produced by fabrication, joining or wear. Thus subsequent
steps in the analysis must account for microcrack arrays and statistical

methods have been applied to this and other probabilistic aspects of the
fracture problem. Although it is important to transfer from analysis of
discrete cracks to arrays of cracks, including important interaction effects,
we will limit attention here to a single macroscopic crack and discuss various
toughening mechanisms in terms of it.

Various toughening possibilities have been suggested which include

(a) Martensitic toughening processes (b) Controlled micro-fracture in a

crack tip process zone (c) Ceranic-metaflic systems (e.g. cermets such as
tungsten carbide cobalt ) and (d) Fibre toughening. Although the intrinsic
toughness of most ceranuics is of the order of 2 to 3 MPav'm-, the maximum
toughness provided by the above mechanisms can be as much as four or

five times the intrinsic toughness.
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Cases (b), (c) and (d) above have usually been discussed in terms of
a mechanism which reduces the effective load seen by the crack. Thus for
case (c) the metallic inclusions are assumed to toughen the ceramic by a
crack bridging mechanism in which the faces of the advancing crack are
pinned together by intact particles for some distance behind the crack tip.
These particles provide an additional resistance to the crack opening at the
tip hence reducing the effective stress intensity factor of the crack. In case
(d) as a crack advances through a fibre compcsite fibres bridge the crack
tip again causing a resistance to the crack opening. For short cracks the
fibres may span the whole crack. Each of these situations can be modelled
as a crack which in addition to the external applied stress has a compressive
internal stress acting on the crack faces which is some function of the crack
opening. This stress acts to oppose the external stress and hence reduces
the effective crack tip stress intensity factor or an equivalent energy release
rate. Such models which have received a fair bit of attention in the last
few years have a sentimental interest for the writer because of a review in
Applied mechanics reviews (1971) of the paper Atkinson (1970). The paper
considered a penny shaped crack in which the faces of the crack were acted
upon by a normal traction which was an arbitrary specified function of
the crack opening displacement and subsequently derived a way of solving
it by an iterative numerical method. The motivation came from the fibre
composites work going on at N.P.L. at the time (1968 when the work was
done) but the method wasn't restricted to any particular model and I said
so. The review said " Author claims no compelling physical motivation
which led him to consider this problem and indeed reviewer fails to see
any problem wherein this analysis could be meaningfully applied ". It is
a pity that we no longer have published named reviews of papers, Applied
mechanics reviews now only publishes abstracts I believe.

Case (a) above, martensitic toughening , is somewhat different to the
other cases since here the increased fracture toughness has two fairly dis-
tinct ingredients. First there is the work supplied to effect the marten-
sitic transformation which reduces the energy available to produce fracture
hence causing an increase in toughness and secondly there is the effect. of the
transformed inclusions as sources of internal stress. These internal stresses
may increase or decrease the effective loads seen by a crack depending on
the particular distribution of internal stresses produced. Recently some
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models of the interaction of these two effects have been discussed
It is of course a well known result, for a plane crack with the usual

definition of stress intensity factor (a ,- K/V/(2r,)) , that for a non-uniform
loading ,app the stress intensity factor can be represented by

K = (ar) - * (a + xr)la -zi)'o'lzi)dzl (1)

With this expression and a suitable model leading to the non-uniform load-
ing seen by the crack a number of situations can be considered.Thus the
well known Dugdale model has the non-uniform loading as a small "pro-
cess" zone at the crack tip in which there is a fixed compressive stress
resulting from plastic flow in addition to the tensile influence of the ap-
plied stress. (We are assuming here that the remote stresses have been
subtracted out of the problem so the above formula applies , one can then
think of t he applied tensile stresses as being equivalent to an appropriate
internal pressure acting on the crack faces. ) The model then requires that
the net stress intensity factor produced by these competing stresses is zero
and hence a relation between the extent of a plastic zone to the crack length
is obtained. Similar models have been Livoked to describe craze formation.
For the more sophisticated models considered here the effective stress seen
by the crack is not independent of the shape of the crack,thus in general
one has to solve a (possibly) non-linear integral equation to determine the
crack shape. Models of this kind will be discussed in section 2 where we
pay most attention to the problem of a plane crack in plane strain or stress
although the case of a penny shaped crack will be considered briefly.

2 Crack bridging by fibres, particulate re-
inforced ceramics, line spring models.

The cases considered here (b). (c) and (d) of the introduction have in
common the fact that the crack can be modelled as reinforced internally by
some mechanism which results in a resistance to the crack opening which is
some known function of the opening itself. Thus the crack can be imagined
as being supported internally by springs which resist its opening in either
a linear or non-linear manner and over an extent of the crack which is

399



localised near the tip or extends over the whole crack. It is , of course,
essential to determine the particular relationship between the crack opening
and the internal stress acting on the crack from a detailed model of the
microstructural processes which are active for particular composites. This
will be considered in the next section, here attention is given to the stress
analysis of the internally loaded crack.

2.1 Mathematical statement of the discrete crack prob-
lem.

(A) THE PENNY SHAPED CRACK.
If the crack is assumed to have a penny shaped planform and the fibres

or particles bridge the crack normal to it then using cylindrical polar coor-
dinates (p. 0.:) with the crack lying on _ = 0,0 < p < a one can write an
integral over the crack faces as (Collins (1962))

2(1 - I')fJ d I uo'(w)dw'

U(1)) = " 1-7rp f _ - . (f 2 (2)

this being valid for 0 -, p "- n . Changing the order of integration we
can write this in the form

(P) 2(1 - v) 11 n(,)I 1 (w,p)dw' + wa(w)I2(wp)dw) (3)

where

I1 (ttp) = Jdl( (j 2 _P2),5(12 _ U'2 )-S) (4)

and
12(wp) = dfl/((j 2 

- p2).S(i2 _ w2).S) (5)

In the above integrals u is the half opening of the crack of radius a, and
a is the normal stress acting internally on the crack faces. Thus a posi-
tive means the crack opening up under a given pressure a negative denotes
the resistance to the crack opening due to the micromechanics. The above
forms are suitable for the determination of u or equivalently o once the re-
lationship between u and a has been determined from the micromechanics.
Once e on the crack has been determined the stress intensity factor follows
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as some weighted integral over the crack faces as discussed in the introduc-
tion (equation (1)).The corresponding formula for the penny shaped crack
can be written as

KT = 2(ar)- f( (6)(a' - pl).s

As stated above this formulation was originally given by Atkinson (1970),
a similar formulation has been presented more recently by Marshall, Cox
and Evans (198.5) to describe the mechanics of matrix cracking in brittle-
matrix fiber composites. The expression they derive for the expression of
o(tu) has a resistance to the crack opening which is proportional to N5 •
We will return in the next section to the details of their model we merely
note that the above equations together with the expression for 0'(u) enable
the calculation of the stress intensity factor of the crack in the composite to
be determined and comparing this with the corresponding stress intensity
factor of a pure matrix crack or a crack in an assumed composite medium
enables the toughening effect. to be determined.

(B) THE PLANE CRACK.
As in the penny shaped crack case considered above the crack opening at

a given position is determined by the entire distribution of surface tractions
and can be written as

2(1 2(1 .o ,dt 0 !(u,)d, (7)
Jr/ (12- 2).6 (ft2 - U,2 ).S

Changing the order of integration enables a single integral expression
to be obtained with a weak logarithmic singularity i. e.

2( - V)jo()dwlog( (a 2 - r 2)'S + (a2 - u'2 )(

V'• 0 (X2 - W2

Here it has been assumed that the stresses on the crack are symmetric
about its centre. An integral equation similar to this is used by Budiansky,
Amazigo and Evans (198S) to analyse a model of small scale crack bridging
in particulate reinforced ceramics.Essenti ally the model considers various
relationships between u and sigma and for each relationship there results
an integral equation to be solved. A number of authors have considered
some aspects of this problem e. g. Walton and Weitsman (1984) gave an
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anaIytical aiidI a numerical treatment of the problem when the resistance

0 Ij, Will, ;. . i,, .I h,) I' iiti.ar ill it as it ,idel of a craze tip zone also

called a "I'ack,-'ral rcaiO". Also Ho (1987) has given a fairly extensive

Irealimenl f he linear spring model and given useful asymptotic relations.

AS palrl )f" it "S1"" colita tlheory i colloid science Hughes and White

(19.7,9 1 give all acount of sone tion-linear models. In addition to these

fatin xl, e .i,i I,.ali-.iiet.s i. is possible 1,, gel. sonie simple results using

,inph' physical arguenies and path independent integrals.

IU~ml r.,

P.rhapsi. I h, q uapl,'. t I i lire whiici to derive qualitative results is that

wh'r," a plka," crack h. a hai ridltziwcl I.,, a li.' Ia the crack tip and this

l-,.t~l,,,, i' ,,;,11 . ,,i l4.,,',1 h, I It, C ,,. aI,, ,. Ii ts i e.. I). Siice ill this case

(h,. Iiil-itlll.Z c..,,, I,, E '. .;,,'1 IIaI E/a « I <t4C 1th sltrss lield viewed

fill 0 If h :1 ' aI' 11cl Ihl a i: us l @ if Il e d : 1.e. -. Iit-A. 4LI)Ipr4)xiiItioil

i h' cr;,ch wd Iie I Ih,- h' lrIliii mw pl,. iiih' s |I 's lvear tih' crack tip would
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then have the distribution

vo.s 2: K f,0(O)/(2rlr)sf (9)

where K is the stress intensity factor due to the applied loading alone
on an unbridged crack and the function f the well known e dependence of
the crack tip stress field. A standard procedure of fracture mechanics is to
consider the problem with the bridging zone in a new coordinate system
scaled on the zone length f'. In this coordinate system in the limit t/a --+ 0
the crack plus bridged zone appears to be semi-infinite with the stress field
(9) as the boundary condition at infinity. This near crack stress distribution
can be expressed as

Or43 MtKfa(O)/(2rr) "5  (10)

where K,,, is now the stress intensity factor of the complete bridged
crack problem in the presence of the applied stresses. A relation between
K, . K the "applied" stress intensity factor (i.e. with no bridged zone ) and
the spring characteristics can be obtained via the 3 integral (Rice (1968)
Eshelby (19.51)) . This can be written as

J = f(H'nj - aiuo,,inA)ds (11)

taken around the path shown in figure 2. (Here W is the strain -energy
density and it,, components of the displacement vector ). The following
result is obtained

(1 - v 2 )K 2 /E = 1- v2)li/E + au, d (12)

The result on the left of the equation comes from the integral around
the large circle which picks up the stress field of (8) , the outer solution,
and hence gives the energy release rate ( per unit crack advance ) of the
unbridged crack. The first term on the right of the equation is from the
integral around a small contour at the tip giving the bridged crack energy
release rate . Further since the crack surfaces are unloaded except in the
bridged region where the only non zero stress for mode one deformation is

( crin our notation) one gets the second expression on the right of (12).

(1) LINEAR SPRINGS
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Figure 2: Path for integral

In the special case when the bridged region is modelled by linear springs
and the spring stress r is written as

a = kEu/(l - 2 ) (13)

in terms of u (the normal crack tip displacement for mode 1 deformation
). Youngs modulus E. Poissons ratio v and a spring stiffness k, equation
(12) reduces to

(1 - ,2 )K 2 E = (1 - v 2)K2E + (1 - V2)0,2(t)l(kE) (14)

where (f ) is the spring stress at the edge (furthest from the crack tip
) of the bridged zone (Rose (1987) , Budiansky et al. (1988) ). An implicit
assumption has been made here that K -- K,, > 0 and that the bridged
region has opened up with u "- 0. With this proviso equation (14) provides
a relation for the " toughening ratio " X = K/K, ( Budiansky et al (1988)
)with the following interpretation. It is supposed that K, represents the
critical stress intensity factor for crack growth in the matrix and that new
springs connecting the crack faces emanate from the crack tip whenever

404



the crack propagates i.e. the crack runs into a self similar bridging zone
With the peak spring stress (7(() set equal to the spring breaking strength
al, crack propagation with simultaneous fracture of the last spring occurs
for 2 -k.K12.\ = [1 + (4k~) 1 2 (15)

Of course equation (15) is nothing more than a reformulation of (14) since
we do not know K, without solving the integral equation (8) even though
k and ay would be specified from the micromechanics. Various expressions
are given by Budiansky et al (1988) and Rose (1987) including full numerical
solution of the integral equation. A useful alternative is to rewrite equation
(14) in the form

A = [1 - (r -./* 12 )] 1 / 2  (16)

since K. the applied stress intensity factor, is easily deduced from the en-
ergy input provided from the applied stress field. It is also readily available
for a given crack length and loading geometry from handbooks of stress in-
tensity factors. The expression (16) does not require solution of an integral
equation it is merely a consequence of the energy balance argument and
the assumption that C/a -- 1 . This is analogous to the situation with
the Dugdale model where the condition of no net stress intensity factor
enables the length of the plastic zone to be removed from a crack opening
displacement growth condition in terms of the ratio of applied load to yield
stress. However for comparison with experimental observations of bridging
zone lengths relations have been derived which involve this length. Thus
Budiansky et al (198) and Rose (1987) give relations between A and a
defined hv

a = 4k(/Ir (17)

which are derived from numerical solution of the integral equation (i).
Simple asymptotic solutions which are useful are

.A ( ] o 18)

for o tending to zero. and
.. : nio 2i < (19)

for a tending to infinity. The above results equations (13 ) to (19) are
all for the linear spring model whereas equation (12) applied to any stress
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displacement law acting in the bridged zone. Thus for application to par-
ticulatc toughening when plastic yielding of the particles is important other

relationships are neccessary, these are considered by the above mentioned

authors and outlined below.
(2) ELASTIC! PLASTIC SPRINGS
If for-increasing u, the springs obey the elastic ideally plastic constitutive

law
a = kEu/(1- v2),

for
U < Uy

where
U . (! - v')/kE

and
-er y

for
>

Then if i(() at the end of the bridged zone exceeds uy the result (12)
gives

(1- -,,)K 2 /E = (1 -, v)I,,iE+(1 - v)o./(kE)+ 2y[u(t)-uy] (20)

If failure of the last spring is now assumed to occur when [u(C) - uy] attains
a critical plastic value up. then the toughening ratio becomes

.\ = (I + ( + 2up/u)l(kK,2,)]112  (21)

Alternatively writing this in terms of K gives

A= -. (1 + 2up/uy)/(kK2 )] - /2  (22)

Results from the numerical solution of integral equations which give the
lengths of the zones where plastic yielding occurs are given in Budiansky
el al (1998)

(3) RIGID PLASTIC SPRINGS
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This case follows from the above result when up is considered very
large the elastic contribution to the spring energy is then ignored and (20)
reduces to

(1 - 1,2)K 2 /E = (1 - v 2 )K/E + 2ayup (23)

The toughening ratio is now

A = (1 + 2E',yup/(I2(I - V2 ))]1/2  (24)

or equivalently

A = [1 - 2Eoyup/(K,2 ( - V2))1 - 1/2 (25)

For this case a simple relation can be presented which gives A in terms of
the bridge length t as

,\ I + 2(2/Ir)1//2oaL"/2/Km (26)

All of the above results are for the case when the zone length is small
compared to the crack length. For situations where the zone extends over
the whole crack length such as occurs for short cracks in composites the
integral equation formulation is still applicable.

3 Micromechanical models leading to "spring"
properties.

We give a rather brief survey of some of the models which have been used
to produce stress displacement relations for the region modelled by springs.
As we have indicated earlier such considerations are .of course, an essential
part of the models. The basis of these models is a more detailed accounting
of t he deformation processes on the scale of individual fibres or particles and
the transfer of this information to concentrations of such fibres or particles.
For example in the case of fibre composites models of fibre pull out are
used to give a relatioship between tr and u for use in the spring model.
Similarly for crack bridging by particles a model relating the average crack
opening produced by the particle pinning to the average energy released on
a microcrack level can be used to relate average a values to u values for use
together with the spning models for the main macroscoic crack analysis.
We give a cursory account of some recent models below.
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(o) No slip, no debond

Ib) Unbofded, frictionally Coo'robd
slopping fibers

Crock-lip debOndin

(c) Initially bonded, dlbonding fibers

Figure 3: Steady state matrix cracking

3.1 Brittle matrix fiber composites, fibre pullout

The nature of the debonding process between an individual fib-e and the
matrix can be quite complicated. For example experiments on pulling out a
glass rod from a polyeurethane matrix and observing the interface fracture
process (e.g. Atkinson et al (1981)) showed a debond to occur initially
either at the stress singularity where the rod met the free surface or at a
preexisting microscopic flaw at the interface. This latter situation usually
occured at the rod base and as the rod was pulled the defect propagated
around the interface finally stopping as it met the compressive stresses seen
by the rod sides. In this paper the details of the observed failure process
was explained in terms of debond fracture mechanics and the induced stress
fields. In principle the more detailed the knowledge of this process the more
meaningful the application to the spring models. Figure 3 illustrates what
might happen to a matrix crack as it proceeds across a fibre composite. If
there is enough frictional resisrance no slip will occur at the fibre matrix
interface (cf. fisure :3 (a)). When slip does occur the situation shown in
figure 3 b) may occur. this is the situalion considered below where an
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equivalent spring model is derived. We consider a simple model of this
here i-e e.g. (Marshall et al (1985) ) . The main assertion is that the
application of tractions T to the end of a fibre cause sliding between the
matrix and fibre over a distance tj say and allows the fibre to pull out of the
matrix a distance u. Such behaviour does of course depend on the nature
of the matrix bond. For a purely frictional bond the sliding distance is
determined by the length over which the interface shear stresses exceed the
friction stress r-. Marshall et al (1985) deduce the following approximate
relation between T and u.

T= 2[uEfr(1 + i7)/R] (27)

where 77 = Efl-f/E,.', with Ef and E, the modulus of fibres and matrix

respectively and 1 f ,1 , the volume fractions. ,rR2 is the fibre cross sectional
area. It remains to relate T to a acting in thespring model. This is done
by writing

ty = T ,(28)

Thus from this model a is proportional to the square root of u.
The application of the spring model with the above value of a leads, via

solution of the integral equation, to a value for KL the stress intensity factor
of the loaded spring crack model i.e. including both the effect of applied
load and the springs. This intensity factor thus characterises the composite
stress and strain field- in the region immediately ahead of the matrix crack.
Because in this region no relative displacements between fibres and matrix
are permitted the matrix and fibre strains must be compatible. Hence

aM /E, = a/E, (29)

where cM is the matrix stress, a is the composite stress and Ec is the
composite modulus

E, = EnV + EiV (30)

The matrix and composite stress intensities scale with the stresses such
that

KL = KAJEc/Em, (31)

where K" is the stress intensity in the matrix. The condition for equi-
librium crack growth (in the absence of environmental effects) is given by
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setting IA0 equal to the critical stress intensity factor, K ' for the matrix.
The criterion for crack growth can then be expressed in terms of KL s

KL = = KNE /Em (32)

This model has been further developed recently by Budiansky et al (1986)
and Budiansky and Amazigo (1989) and some simpler energy balance ar-
guments such as discussed in the last section apply to this situation also.
These authors thus attempt to generalise the earlier model of Aveston et
a] (1971).

3.2 Particulate toughening

Figure 4: Particulate reinforcement

Budiansky et. al (1988) assume spherical particles and suppose thai the
faces of an advancing plane crack are pinned by particles at their equators.
Such an assumption interpreted strictly would require that the matrix area
on the bridged zone were reduced by a fraction that exceeds the volume
concentration c of particles. As ani approximation they assume that the
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matrix area concentration on each crack face has the value (1-c) which
corresponds to an arbitrary plane cross section of the composite material.

To apply the spring models of section 2 the spring stress a at a given
location on the crack plane is identified with smeared out particle stresses
cap where ap is the average stress at. that location i.e. the average over ell
particles in the thickness direction perpindicular to the plane of figure 4 for
the plane crack model. The following estimate for the spring constant k is
given by Budiansky et al (1988). they write

2c )(E. 1-u 2 .

k = (2-)( E, :,)(I _V2) (33)

where E and v, are the effective elastic constants of the composite material
consisting of the ceramic matrix contaaing a randomly distributed concen-
tration c of particles, a is the particle radius and 3(c) is given approximately
by the formula

3 :: (1 - c)(1 - cs ) (34)

The equation (14) denoting the energy balance is modified to

(1 - ')K2i'E = (1 - c)(1 - v2 )K'/E, + (I - v2)o'(C)/(kE) (35)

Here they argue that since the first term on the right denotes energy re-
lease into the real crack tip and this tip advances only into matrix material
then e and L, should be replaced by E,,, and v, and further this term should
be multiplied by (1-c) to take into the fact that the bridging particles re-
duce the the length of the advancing crack front by a factor c. The reader
is referred to the original paper for details of comparisons with experiment.
The observation is also made by these authors that to be aneffective tough-
ening mechanism a matrix crack should tend to be attracted to the particles
and a neccessary condition for this might be that the elastic stiffness of the
particles should be less than that of the matrix. Such an effect occurs when
one considers'the interaction of a plane crack and a circular inclusion of
different elastic constants see e.g. Atkinson (1971).

4 Concluding remarks

In this rather brief account of some current theories of toughening we have
not treated case (a) of the introduction in any detail .We merely note that
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recently Budiansky and Amazigo (1988) have discussed the role of both duc-
tile crack bridging particles and phase transforming particles witha view to
the possible enhancement of toughness by these two effects. Rose (1985) has
also discussed the transformation toughening problem. It is clear of course
that a transforming particle induces an internal stress field in the matrix
which will influence crack growth. Precisely how it does this requires the
interaction of the spring model and the inclusion problem and a definitive
treatment of this perhaps still remains to be done. Although Budiansky
and Amazigo (1988) claim to show a synergistic effect in certain parameter
ranges. Another interesting paper we have not mentioned hitherto is that
of Foote et a] (1986) who derive crack growth resistance curves for a fibre
cement composite in a double cantilever beam geometry. They look at the
eftect of various softening indexes (n) of a power law zelationship between
cr and u .Thus again a a u relationship holds across the faces of the crack
so Atkinson (1970) was not so useless afterall.
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ABSTRACT

The present paper offers a cursory review of the state-of-art in analytical modelling of

brittle response. The discussion is formally divided on considerations of dicrete (statistical)

and continuum (micromechanical and phenomenological) models. An effort was made to

detect the relations between these three classes of models and ascertain the manner of using

these relations in improving these models.

INTRODUCTION

The objective of this paper is to review and scrutinize the methodologies for analytical
modelling of the response of elastic material weakened by a diffuse ensemble of crack-like

micro-defects. The ultimate goal is to examine the methods leading to the establishment of a
constitutive relation between the macro-stresses and macro-strains reflecting the physics of

irreversible changes of the microstructure of the solid. Since the utility of an analytical
model, and its acceptance in engineering practice, are proportional to its simplicity a due
consideration must be directed towards the introduction of a set of physically justified
simplifying assumptions. Blurring the inconsequential and experimentally not reproducible
details of the mechanical response these assumptions emphasize the salient aspects and
essential nature of the underlying phenomena. On the other hand, the introduced
simplifications by their very nature place limits on the utility and applicability of the model
which must be recognized in analyses.
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The discussion in this paper is limited to the response of an elastic specimen containing a

large number of microcracks distributed over a significant fraction of its volume. It will be

assumed that most, ff not all, of the energy is dissipated on the formation and propagation of

microcracks. Focusing on the predominantly brittle response the macro-strains and attendant

deformations may be regarded as infinitesimal rendering the linear theory of elasticity

applicable.

For the sake of simplicity assume that all microcracks are planar and elliptical in shape.

The stress and strain fields in the specimen containing N of these cracks can be determined,

at least in principle, solving N coupled integral equations (Kunin 1983). Naturally, since N

is, by definition, a very large number such a strategy will in most cases not be a feasible one.

Moreover, in the case of a typical engineering material (such as concrete) the shape of these

cracks is irregular and their size and position random. Therefore, a rigorous determination of

stress and strain fields within the specimen will not be possible. Additionally, the growth

pattern of these microcracks depends not only on the fluctuations of the local stress field but

also on the randomness of the material toughness on the microscale. In other words, the

evolution of damage (understood herein as a gradual change in the number of cracks and

their growth) is a problem with an infinite number of degrees of freedom (Bolotin 1989).

Since a rigorous analytical solution of the problem is not possible it becomes necessary to

rely upon a phenomenological theory, construct an approximate micromechanical model or

resort to computational methods in conjunction with statistical considerations. First of these

strategies, most frequently used - engineering analyses, will be given only a cursory

attention within this paper. Even then, phenomenological modelling will be addressed only in

relation to the micromechanics. The approximate micromechanical models are commonly

based on idealized crack geometry (considering them, for example, penny shaped in form)

and involve an averaging (homogenization) process within the framework of the effective

continua models (Mura 1982, Kunin 1983, Krajcinovic and Sumarac 1987, Sumarac and

Krajcinovic 1988, Ju 1989, etc.). Except for few cases (M. Kachanov 1987), this approach,

by is very nature, disregards the irregularities in the microcrack geometry and their

interaction leading to tractable, local analytical models involving acceptable levels of

computational effort in applications. The last of these three approaches, popular among

statistical physicists, fully acknowledges the randomness in the defect morphology and the

distribution of fracture energy on the microscale. However, this class of algorithms is purely

numerical in form involving numerous and repetitious large scale computations. In fact, the
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computations are so extensive that all of the existing analyses were restricted to two-

dimensional lattices.

The emphasis of this paper will be placed on the analytical micromechanically based

models. The statistical models will be discussed solely in the context of the limitations and

possible modifications of the analytical models.

DISCRETE (STATISTICAL) MODELS

For a better understanding of the problem it is, perhaps, advisable to start with a very

simple model such as a loose bundle of parallel rods carrying an external tensile load F

(Krajcinovic and Silva 1982, Hult and Travnicek 1983, Krajcinovic 1989). The analysis of

the parallel bar system, shown in Fig. 1, is based on the following simplifying assumptions:

- all rods are elastic, perfectly brittle and arranged in such a manner that they equally

share in carrying the external load F,

- all N rods have identical stiffness K/N and elongation,

- the strengths of the rods are different.

The system is supplied by a rigid beam (bus) at both ends serving as a device preventing
unequal elongation of individual bars.

(e) W b

p(F,)
12N

I /Ft

Fig. 1. (a) System of parallel loose bars.

(b) Probability density function of bar strengths
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Despite the initial (quenched) disorder, introduced by unequal bar strengths, the analysis

is thereafter deterministic. It is trivial to prove that the equlibrium is satisfied when

F = Kx(1 - D) (1)

where x is the elongation of the system and

D = (n/N) (2)

the damage variable selected as the ratio between the number of the already ruptured bars n

and the total number of bars N.

Assuming that the strength probability density function of individual bars is p(FR), and

that the number of bars tends to infinity the equlibrium equation (1) can be recast in form of

an integral

F= KxJP(FR) dFR (3)FfF

The damage variable can now be written as the cumulative probability function P(Kx) of the

given strength probability density function p(FR)

X,
D = p(FR ) dFR = P(Kx) = pr(FR < Kx) (4)

In the case when the probability density function of bar strengths is uniform p(FR) =
(1 / FRM) , where FRM is the strength of the strongest bar, it can readily be demonstrated
that

D =Kx/FRM and F = Kx [I - (Kx/FRM)] (5)

The force-displacement curve is a quadratic parabola with apex at
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F = FM = (1/2)KxM = NFRm /4 (6)

At the apex of the force-displacement curve (Fig.2) the damage is

DM = 0.5 at x=xM (7)

F/ Rml

0.25

0.2

0.15

0.1

0.05

0.2 0.4 0.6 0.8 KXI&M

Fig.2. Force-elongation curve for parallel bar model

For different strength distributions the damage at maximum stress and the maximum stress

itself will be different (see, Krajcinovic 1989).

Using conventional expressions F = Aoo, E = x/L and K = EAo/L, where E, Ao and L

are the elastic modulus, initial (undamaged) cross-sectional area and length of the macro-bar,

the expressions (5) can be rewritten in the conventional form

o = E(1 - D)e and D = Av / AO (8)

where Av is the area initially occupied by the ruptured bars which is not available for the

transmission of forces.

A computationally much more intensive problem of a triangular lattice (Fig.3) was lately

examined by Herrmann, et al. (1989) and Hansen, et al. (1989). The central idea was to

examine the influence of the initial disorder and the size of the lattice on the mechanical
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response. The first task was accomplished assigning different strengths to different bars of

the lattice and repeating computations for each distribution (initial disorder). In each case the

computations of forces in the lattice members for a given displacement of the rigid end

members are performed in the routine manner. Naturally, the strength probability density

function (taken as uniform as in Fig. 1, showing a module of the lattice repeating itself along

the horizontal axis) was identical for all cases allowing for a meaningful comparison of

results. Computed quantities were then averaged over different lattices keeping the number n

of ruptured bars constant ("history" averaging). The influence of the lattice size was then

assessed considering lattices for which L (Fig.3) was taken as 4, 8, 16 and 24.

Fig.3. Central-force tiangular lattice (L = 4).

According to the reported results of these computations the relationship between macro-
stresses and macro-strains (translated into more traditional form) was found to be

a = Ee (I- z13) (9)

where the parameter a, proportional to L1/4 , is determined in such a manner that it fits the

results for all lattice sizes equally well. The damage variable can be deduced to be of the form
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0O = (3/4) 13 L1A E (10)

It is notable that the corresponding expressions for the loose bundle parallel system and the

lattice are identical in form for the pre-critical regime. In other words, the response is not

very sensitive to the level of sophistication in modelling.

It is interesting that these computations demonstraft that in the pre-critical regime:

(a) the average stress-strain curves for all four lattice sizes and all distributions of the

initial disorder can be collapsed on a single (parabolic) master-curve, and
(b) the relation between damage and strain (10) is linear.
(c) the damage at the apex of the stress-strain curve was again equal to 0.5 as in the
previously discussed case of the parallel bar model

In concert with the loose bundle parallel bar system this obviously means that in the pre-
critical regime the crack interaction has little influence on the overall response which is well
described by simple volume averages of the involved fields. In other words, the pre-critical
regime is deterministic by nature. The crack interaction and even the redistribution of stresses
is not crucial for the determination of the overall response. The fractality, i.e. dependence of
the overall response on the size of the lattice (10) is, perhaps, associated with a rather small
number of triangular elements and should disappear for larger lattices. In a sharp contrast,

the distribution of forces in the post-peak regime, just before the rupture, is strongly multi-
fractal. The inability to identify a single length scaling parameter should be related to the fact

that the post-peak regime strongly depends on the distances between the adjacent cracks. It

seems reasonable to expect that more than one length parameter must be introduced to model

that behavior. Additionally, the post-peak response is found to depend strongly on the initial

disorder. Consequently, since the initial disorder in engineering materials is random the post-

peak behavior is not deterministic.

It is very important to notice that neither of two models required an additional kinetic law

describing the rate of the damage accumulation with either stresses or strains. This law was,

indeed, derived from the initial disorder, i.e. assumed e- -ibution of initial defects and

fracture strengths. The damage evolution law was, however, found to be different for

different strength distributions (Krajcinovic and Silva 1982).
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CONTINUUM MODELS

M~aica odl

One of the first tasks related to the introduction of an effective continuum is to define the

representative volume element (RVE). In a very general sense, a RVE is the smallest volume

of material which with respect to a given random variable has the same properties as the

macro-specimen. More specifically, the first (n) statistical moments of the distribution of a

particular random variable taken over the volume V of the RVE should to a desired level of

accuracy equal the corresponding statistical moments of the distribution of the same variable

taken over all volumes larger than V. These requirements were further reduced by Nemat-

Nasser and Honi (1990) who, roughly speaking, considered a RVE to be statistically

representative of the macro-response if the macro-stress is a volume average of micro-

stresses corresponding to the same elastic macro-strain. An analogous definition has been

advanced by the same two authors for the case of imposed macro-strains.

Assuming that these conditions for the RVE are satisfied it becomes possible to establish a

relation between a field on the micro-scale and the same field on the macro-scale. All

information regarding the structure of the materials and the defects within the RVE will form

the configurational space attached to a material point of the effective continuum. Therefore,

the RVE allows for the mapping of the micro-structure of the material on the material point of

the continuum. Naturally, since the RVE must contain a statistically valid sample of

microcracks a configurational space describing all defects must contain a large number of

data. Assuming, for simplicity, all N cracks to be planar and elliptical in shape an all

inclusive configurational space should comprise of 8N scalars (2N half-axis lengths, 3N

Euler angles and 3N scalars defining the position of the microcrack center). In the case of

inhomogeneous state of macro-stress and strain the bookkeeping associated with upgrading

the configurational space in every material point of the specimen can obviously present a

significant and often unsurmountable problem.

The conventional method of establishing the governing equations is typically prefaced by
introducing the Helmoltz 0(e) and Gibbs 'P(c) energies of the specimen (or RVE) with

volume V such that

)(E) + T'(a) = V(a:e) (1)
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where the bar above the symbol denotes the volume average or, in sense of Nemat-Nasser

and Hori (1990) definition, the macro-fields. The macro-stresses and macro-strains are

defined as

VoC = 0"I and V = alF/aC (12)

When the elastic strains in the matrix are small, and the concentration of inhomogeneities

dilute, the macro-stresses are mapped on the macro-strains by a linearized relation of a

general form

E = CP(H) + S(H):o (13)

where H is used to denote a set of scalar and tensor variables defining the irreversible

rearrangements of the material microstructure (recorded history). Also, S(H) is a fourth rank

tensor known as compliance which, in the present case, depends on the properties of the
matrix and the given distribution of microdefects. From equations listed above the

compliance is

S = (l/V) (a2,y 0/a ) (14)

Additionally,

EP = E(G = 0) (15)

is the inelastic (plastic or residual) strain in the specimen.

The incremental form of the relation between the macro-stresses and macro-strains (13)

necessary for inelastic analyses is

& = deP + S:do + dS:a (16)

The last term on the right hand side of the equation (16) represents the inelastic stress

associated with the change in the compliance of the specimen. Naturally, the compliance can

change only if the recorded history is changed, i.e. if the energy is dissipated.

Substituting (13) into (11) it also follows that
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'(a,H) = -40 0(H) + V ( : P) + (1/2) V(c : S : o) (17)

where 00 is the locked in energy at vanishing state of stress.

Assuming that the irreversible rearrangement of the microstructure can be described by a
finite set of thermodynamic fluxes di (i = 1,2,...,n), the inelastic increment of the Gibbs

energy can always be written as a scalar product of fluxes and their conjugate thermodynamic

forces (Rice 1975),

diT = T(a, H + dH) - TF(a, H) = 2; fj dj (j = 1,2,...,n) (18)

Combining (17) and (18) it further follows that

I f(,)-d = - dO(H) + V (o : deP) + (1/2) V (o : dS: cr) (19)

Concentrating on the defects in the form of microcracks the history recording set of

parameters H consists of data related to the size, shape, orientation and position of all

microcracks within the volume V of the RVE. The inelastic change in the Gibbs energy is

then (Rice, 1975)

di = = fj = f [(G- 2y)d]dL > 0 (20)

where G is the elastic energy release rate, y the surface (fracture) energy, and dA the local

advance of the crack front L in the direction of its normal. The integral in (20) is taken along

the perimeter of each active microcrack. The sign of the inequality in (20) is the consequence

of the second law of thermodynamics (entropy production). It is important to realize that no
energy is dissipated unless the crack size changes (dA > 0), i.e. unless additional atomic

bonds in the material are ruptured.

The energy release rate of a crack embedded in an elastic matrix can be written in form

(Rice 1975)

G =(X/4) ki Cij kj (21)
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where k is the vector having the stress intensity factors as components (i = 1,2,3) and C(H)

a second rank tensor depending on the elastic properties of the matrix and the recorded

history H. From the expressions (19) to (21) the inelastic change in the compliance tensor is

now

d SijMn = -VL fj[52-Cqrl &q ar dijdL (22)CaaOij a (22)

with integration extended over the perimeters of all active cracks within the RVE.

It is important to notice that:
(a) the deformation process is elastic (non-dissipative and reversible dH = 0) in the
case when the crack surface area does not change (dQ = 0), regardless of possible
changes in the stress and strain fields or even crack opening displacements and/or

stress intensity factors,
(b) the overall compliance changes as the history is recorded. Correspondingly, the
slopes of the unloading segments at different values of H will not be parallel among

themselves or with the initial, elastic part of the loading curve (at H = 0).

The inelastic macro-strain eP can readily be derived from the known eigenstrains within

the inhomogeneous inclusions (see Mura 1982)

eP= < Ci> = fc** = f(P + E*) (23)

where EP is the plastic strain and c' the eigenstrain within the inclusion. Also

f = " ia/V (24)

is the fraction of the volume occupied by the inhomogeneous inclusions. The sum in (24) is
extended over all inhomogeneous inclusions o.

The expressions for the rate of the inelastic change in the compliance tensor can also be
derived using the inclusion method in conjunction with averaging (Horii and Nemat-Nasser
1983, Krajcinovic and Fanella 1986, etc.). An elliptical crack is modeled as a limiting case of
an ellipsoidal inclusion of vanishing thickness 2a3 in the direction of the crack normal. The
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eigenstrain can then be written as (Mura 1982, Horii and Nemat-Nasser 1983, Krajcinovic

and Sumaac 1987, etc.)

n (a3E) = -L (nO[u] + [u]0n) dA (25)
ft-+0 JA

In (25) n is the normal to the crack surface and [u] the displacement discontinuity across

the surface of the crack. The integration is extended over the entire crack surface A. The

symbol ® in (25) denotes the dyadic (tensor) product of two vectors.

Introducing the expressions relating the stress intensity factors and crack opening
displacements (Hoenig 1978) it can be shown that the inelastic change of the compliance can

be written (Krajcinovic 1989)

dS = v (a B a)dL (26)

where a is a characteristic length (for instance, the length of one of the axes of the ellipse)

and B(H) a fourth rank tensor containing information about the crack sizes and orientations
(Euler angles 0 and 0). Since the components of the tensor B are computed from the crack

opening displacements they, in principle, depend on the presence of other cracks within the
RVE. Since the perimeter of the crack can be normalized by the length a from (26) it finally

follows that

dS = N (3/V) < (3 a2 8a) B( ,O) > (27)

where N is the total number of cracks within the volume V of the RVE. If the crack sizes and

orientations are not correlated the expression (27) can be rewritten in a simpler form as

dS (N / V ) <3 a2 8a> ) <B( ,0)> (28)

where the term in the first brackets on the right hand side of (28) is the increment of the

Budiansky and O'Connell (1976) damage variable. Consequently, expressions (27) and (28)

confirm that the change in compliance is nothing but an orientation weighted volume average
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(i.e. macro-structural analogue) of the Budiansky-O'Connell damage variable. In all of the

above expressions the change of the compliance is inelastic. Since the elastic change of the

compliance does not exist it is not considered necessary to use the superscript "i" in

equations (26) to (28).

According to the above discussion the constitutive law (21) relating macro-stresses and

macro-strains can be written in an explicit form whenever the expressions for the rate of
change of the volume averages of the inelastic strains dei and compliance tensor dS are

available. In view of the expressions (21), (22) and (25) this is the case when the geometry,

loading and material properties are simple enough to admit analytical solutions for the stress
intensity factors, components of the second rank tensor C and the crack opening

displacements [u] (needed to compute the components of the tensor B) In general this

restricts the analyses to the planar and penny-shaped cracks embedded in a homogeneous

isotropic or at most transversely isotropic and infinitely extended elastic matrix. In all other

cases the determination of the stress intensity factors and/or crack opening displacements

requires use of approximate expressions (Nemat-Nasser and Horii 1982, Fanella and

Krajcinovic 1988, Nemat-Nasser and Obata 1988) or nontrivial quadratures of complicated

integrals (Mura 1982) unsuitable for the considered problem. The above mentioned

restrictions severely limit the applicability of these micromechanical models since the

anisotropy will, in a general case, be introduced by microcracks into an otherwise isotropic

matrix.

The expressions such as (22) and (28) imply summation of contributions of each of the N

microcracks needed to compute the change of the compliance of the RVE mapping on the

material point. This process is further complicated by the fact that both the stress intensity

factor and the crack opening displacement of the observed crack will be influenced by the

presence of the other (N- 1) cracks within the RVE. Even though these stress intensity factors

and crack opening displacements can be, as already mentioned, determined solving a system

of N coupled integral equations, such a strategy is by no means feasible since the

computations would have to be repeated for every increment of the stress field (during which

the history changes) at each material point.

A much more promising strategy is associated with the application of the effective

continuum models discussed at length in Kunin (1983), Nemat-Nasser and Hori (1990) and

many other sources. The basic idea of this approach consists in reducing the problem of

determining the stresses and strains in an elastic solid weakened by many cracks by a series

of much simpler problems of computing the stresses and strains for the case of a single crack
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embedded in an effective continuum. The simplest, and most frequently applied, model

belonging to this family is based on the so-called self-consistency property. More
specifically, the self-consistent model implies that:

(a) the external field of an observed defect weakly depends on the exact location of the
other defects within the RVF, and that
(b) the external field of each crack is equal to the average (macro, or far-field) stress in

the RVE.

The assumption (b) eliminates the need to solve the system of integral equation while the

assumption (a) reduces the configuration space by eliminating from considerations the
location of cracks within the RVE. More importantly, it becomes possible to place each crack
into the center of the RVE occupied by an effective solid which in the sense of the overall
energy reflects the presence of all other cracks. Since a microcrack is typically small
compared to the size of the RVE, the stress intensity factors and the crack opening
displacements of a given microcrack (assuming it to be penny-shaped or elliptic in form) can
readily be determined if the effective solid is either isotropic or transversely isotropic. The

simplest solution, to be referred to as the Taylor's model, is to neglect the other cracks
altogether and assume that each crack is embedded in the virgin (undamaged) solid. This
approximation is, obviously, justified only in the case of a dilute crack concentration. In all

of these cases, regardless of the approximation level the overall solution still implies a
superposition of a large number of simple problems. The superposition is typically replaced
by quadratures introducing the probability density functions for the crack sizes and
orientations and integrating over the corresponding space (M. Kachanov 1982, Horii and
Nemat-Nasser 1983, Krajcinovic and Fanella 1986, Krajcinovic and Sumarac 1989, etc.).

It is notable that in its conventional form the self-consistent model (Budiansky and
O'Connell 1976) predicts that the elastic moduli will vanish at some microcrack density. For
example, for the case of isotropic damage (perfectly random orientation of cracks) the elastic
modulus vanishes when

c0 = (N a3 / V) = 9 / 16 (27)

It is very interesting, and perhaps not entirely fortuitous, that the damage at the maximum
stress is again close to 0.5 as found in the case of the parallel bar model (no interaction) and

lattice systems.
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This result provided motivation for several modifications and improvements of the

original method such as double embedding suggested by Christensen and Lo (1979), a more

recent method promoted by Mori and Wakashima (1990). Additionally, the application of the

differential scheme (Hashin 1988) attracted substantial interest. All of these models

significantly improve the estimates of the elastic moduli for moderate to high microcrack

densities defined as the range 0.2 < o < 0.5 of the Budiansky-O'Connell variable (see,

Nemat-Nasser and Hori 1990). However, a question remains whether the direct interaction
of microcracks at these densities already becomes significant. A more rigorous level of

modelling (Kanaun 1974) appears to be too complex to be appealing. An approximation

along the lines suggested by M. Kachanov (1987) seems to present a feasible alternative even

though the configurational space attached to each material point of the continuum becomes

substantially larger since it becomes necessary to keep track of the exact position of each

crack within the RVE.

The most difficult problem in the process of the formulation of a continuum theory consist

in a rational definition of the kinetic equations, i.e. in prescribing the law describing the

advance of the crack front 8 as a function of the stresses. It was already noted that this

was not the case utilizing the discrete models discussed above. The kinetic law was just a

consequence of the initial disorder, i.e. of the fact that the resistance to the crack growth was

not uniform. An essentially similar idea was advanced in Krajcinovic and Fanella (1986),

Krajcinovic and Sumarac (1987), Krajcinovic (1989), etc. who considered statistical

distribution of strengths based on the microstructural hierarchy of fracture energies, and the

morphology of the microstructure itself. The performed computations did not prove to be

very sensitive within the considered range of initial disorders. This was to be expected since

all performed computations were based on the Taylor's and/or self-consistent models and

were, therefore, valid only in the pre-critical regime. The post-critical regime will, in all

probability, strongly depend on the morphology of the microstructure (grain size, initial

disorder and initial defects).

A rational formulation of kinetic equations, analogous to the procedure commonly

adopted in slip theories, was suggested by Krajcinovic and Fanella (1986), Krajcinovic and

Sumarac (1987), Krajcinovic (1989), etc.. This formulation is based on the Griffith's

criterion, derivable from (20), according to which an observed microcrack will commence its

growth (R > 0) when

G - 2y > 0 (28)
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The elastic energy release rate G of a given crack depends on the crack size a, orientation
(Euler angles ), recorded history (accumulated damage) H and the state of stress. Thus, the

expressions (28) written for all N cracks within the RVE, represent a family of surfaces in
the (a, *, a, H) space. The inner envelope of this family of surfaces (which contains the
unstressed state ; = 0) represents the locus of points (thermodynamic states) at which the

history can change (8k > 0).

The fracture (surface) energy y must be considered as being a random variable. The

distribution of this random variable depends on the morphology of the micro-scale (coarse
aggregate grading in concrete, grain size distribution in ceramics, etc.) as well as the
hierarchy of strengths of the constituent phases.

The analyses using the described models (see a summary in Krajcinovic 1989, Nemat-
Nasser and Obata 1988, or Ju 1989) proved to be reasonably straightforward in the case of

simple, homogeneous states of stress. Most, if not all, material parameters were directly

identifiable reducing the ambiguity to a minimum. Despite the simplifying assumptions
introduced into the model the results proved to be sufficiently accurate for all practical

purposes. In all considered cases of uniaxial tension and compression of brittle and semi-

brittle materials, time dependent and time independent deformation of polycrystalline
ceramics these models were restricted to the pre-critical regime. Nevertheless, by relating the

macro-response to the micro-structure of the specimen the micromechanical theories will,

eventually, provide rational basis for optimization of materials for a specific set of

circumstances. This aspect of the micromechanical modeling was further emphasized in the
formulation of an analytical model for the prediction of the gradual degradation of concrete

exposed to the sulphate attack, Fig.4 (Krajcinovic, et al., 1990). In this particular case it was
possible to go a step further, examine the equations of the chemical reactions, and establish a

rational connection between the available volumes of the reactants and the eigenstrains related

to the expansion of the reactive products. As a result, the overall strain, and the failure mode,

is found to depend on the chemical composition of the concrete, its microstructure
(diffusivity and porosity) and the concentration of the diffusing solute. The results, shown
below clearly indicate the power of the adopted modelling technique.
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Fig.4 Expansion Of mortar bars causedj by external sulphate attack(solid symbols - experimnents by Ouyang, et a,. 1988)
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Despite their great advantage in modelling physical reality with a minimum of ambiguityand arbitrariness the rnlcromechanjcal models are, i ge ral, c p ti 1 infficin oPractical applications. Conversely, the ambiguities inherent in macro-modelling of micro-Processes often result in emergence Of many different and often contradictoryphenomenological models. This was certainly true in the case of the damage mechanic:s (see

Krajcinovic, 1984) which was from the very begining plagued by a plethora of models
clainrg to be rightful genealiztion of the original Kachanov's (1958) model.

It seem's, therefore, useful to settle some of the outstanding points using the already
known results following from the micromechanics of the analyzed phenomenon.Concntraingon the perfectly brittle Processes on the basis of the expression (18) rewrittenas,
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diT = Q, dqj (29)
the macro thermodynamic flux written in form of a vector can be defined as

dq = (dSllll,dS2222,...) (30)

while the corresponding vector of affinities is

Q = (1/2){ol11,0o22022,...) (31)

The micro-fluxes and affinities derived from (20) as

fj = (LI2A) (G - 2y)j and dj = (i/V) (2A dA/L)j (32)

can be related to the corresponding macro fields (31) and (32) in a manner derived in Rice

(1971). Thus, as argued in Krajcinovic, et al. (t.a.) the thermodynamic force is the excess

energy release rate integrated along the perimeter of the crack and averaged over its surface.

Also, the thermodynamic flux is recognized as the increment of the Budiansky-O'Connell

damage variable (27).

Following Rice (1971) it can be further shown that if the increase in the surface area of a
crack depends on the external stress only via its own affinity dn = F(fn, H) the macro-

potential (Krajcinovic, et al., La.)

fi(Q, 4) = m(f., H) df. (33)

can be obtained superimposing all micro-potentials F(fnJH). The macro-fluxes are then

obtained as in the theory of plasticity from the normality property of the macro-potential.

The most important aspect of the outlined micro-to-macro transition, discussed in

considerable detail in Krajcinovic, et al. (t.a.) are that the potential exists as long as the

propagation of a crack depends only on its own energy release rate. All other cracks
influence the observed crack only through the properties of the effective medium.

Consequently, the potential exists whenever the self-consistent approximation is justifiable.

It is also noticed that while the change of the compliance can be selected as the macro-flux it
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is not always possible to identify an instantaneous magnitude of the compliance as the

internal variable. This situation is analogous to the theory of plasticity which is also unable to

determine the initial value of the plastic strain at the onset of an experiment.

CONCLUSIONS

The objective of the present paper was to review the state-of-art in modelling of brittle

response of engineering solids. Without dwelling on details of the discussed models it seems

reasonable to conclude that despite the significant progress achieved during the last decade

the task of formulating a realistic, reliable and comprehensive analytical model has not as yet

been fully accomplished. The mere fact that the three discussed classes of models have not as

yet been properly related is just one of the reasons for the above statement.

The statistical (discrete) modelling was limited to expensive computations which will

become even more extensive with transition to the three-dimensional problems and more

realistic lattices. Nevertheless, the physical insight into the phenomenon of damage evolution

and its dependence on the random properties of the microstructure, brought to light with this

type of models, should not be underestimated.

The micromechanical modelling seems to work exceedingly well for the homogeneous

states of stress and strain and the pre-critical regime. The versatility of this class of models

and the ease with which it can be adopted to different types of problems has been established

beyond any doubt. The most important accomplishment of these models is associated with

their ability to relate the macro-response to the micro-structure and even chemical

composition of the solid. The extension of this type of models to the post-critical response

(see the papers in Mazars and Bazant, 1989) is still a matter of considerable disagreements.

In view of the results of the statistical modelling it appears doubtful whether a deterministic

model of the post-peak response presents a realistic objective at all.

It was finally argued that a reasonably simple phenomenological model can be derived

from ;he nicrujiiAhwmiical theory in a rigorous manner via a micro-to-macro transition

(similar to those establishing connection between the slip and plasticity theories). This

approach seems to be very helpful in settling the dispute centering on a "proper" selection of

the internal (damage) variable which plagued the adolescent period of the development of the
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damage mechanics. However, insufficient data and experience related to the application of

this model to a wide spectrum of problems prevents any definitive conclusions and
assessments of its utility.

The most far reaching conclusions is, perhaps, that the deterministic nature of the pre-
critical response lends itslef well to micromechanical ad phenomenological modelling alike.

The volume averages of the involved fields are sufficient indicators of the mechanical
response and further refinements of these models will lead to an accurate assessment of many
related phenomena. The modelling of the response in the post-critical (or softening) regime is
an altogether different problem. The responst becomes by its nature strongly non-local and
non-deterministic. Direct crack interaction takes a dominant role. In the language of the

statistical physics the damage is a multifractal involving more than one scale parameter. In
view of the random nature of the response, large deviations from the expected values and
large skewness of the results the volume averages have much less significance than in the

pre-critical regime. Hence, a rational model of this regime of the overall response presents a

serious challenge which must be addressed in all of its complexity.
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ABF: T

It is arguje5 that, contrary to the spirit of many danage
rode2s, there is no simple correlation between fracturing of a
brittle r icrocracking solid and the change of its effective
elastic r~uli. Physically, the absence of such a correlation is
explained by the fact that the fracture-related properties (like
stress intensity factors) are deterrined by local fluctuations of
the crack array gecretry whereas the effective elastic constants
are the vc2u-e averaa -,antities relatively insensitive to such
fluctuations.

It is d.sc-ssed whether a correlation exists between the
effective elastic rduli of a solid with multiple cracks and the
fracture-related properties (like stress intensity factors, SIFs).
T-is discu-ssin is relevant for a nur.ber of damage rodels (see
reviews [2,23) which are aired at description of fracturing of a
brittle ricrocracking solid but in actuality deal with the
effective elasticrrcperties of the solid. Such a substitution is
done either explicitly, by assuning that the tensor of effective
elastic compliance Sijkl can be used as a damage parameter, or
implicitly, by constructing an elastic potential f which is
quadratic in stresses (or strains) and contains, in addition, a
damage parameter D (scalar, vectorial or tensorial); such a
construction, aside from the statement that the derivative Zf/ D
can be interpreted as an energy release rate associated with
damage, reduces to a certain model for the effective elastic
constants. The underlying idea - that progression towards failure
can be monitored by the change of effective elastic constants -
seems intuitively reasonable; it is particularly tempting due to
the fact that the effective elastic roduli can be easily measured.

An objection can be raised that, as is well known,a small
crack in a brittle raterial has a very small impact on the
effective elastic constants but drastically reduces the tensile
strenoth. One ray argue, however, that, after certain initial set
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of cracks has been nucleated and started to grow, the progression
towards failure is uniquely correlated to the change of the
effective elastic moduli. This idea is examined below from
several points of view.

2. "PARADOXICAL" EXAMPLE

To demonstrate that this idea is far from obvious, we start
with a simple example when the relation between the SIFs and the
effective elastic properties is "paradoxical". Consider a plate
containing stacks of parallel cracks (fig.l). Suppose that extra
cracks are introduced in-between the neighboring cracks in stacks.

Fig. 1. Crack array with paradoxical relation between SIFs and
effective stiffness

Introduction of these new cracks, obviously, reduces elastic
stiffness in the direction normal to cracks (since it p:oduces
additional displacements at remote boundaries when load is
applied) - raterial elastically "softens". However, the SIFs
decrease (due to an increased shielding) so that the critical load
at which the cracks start to propagate increases - material is
strengthenez: by new cracks.

3. RANDOM CRACK ARRAYS

It may be argued that the example above does not represent
any realistic crack statistics (although such parallel crack
patcerns occur in rocks and certain composites) and that for the
crack arrays that are more "random" the association between
progression towards failure and reduction of elastic stiffness is
approDriate. To demonstrate that such an association is not
obviou.s evei, for random arrays, we did the following computer
experiments. A number of two-dimensional crack arrays containing
randomly oriented cracks of the same length 21 were generated
(using the random number generator); statistics of crack centers
was also random (subject to the restriction that cracks were not
allowed to intersect: this was achieved by generating cracks
successiv#-'-, and discarding a newly generated crack if it happened
to interse . the already existing oner). For each sample array,
using the method of [3], we :alculated (1) the effective Young's
rduJus Eeff and (2) maximal, among all the crack tips, value of
YI'KII induced Py a uniaxial loading. (Strictly speaking, the
value of KI+K1i is relevant for the initiation of crack
propagation only in the case of rectilinear crack extens'on; when
bith2 KI and KII are present, a certain linear commination of
YIKII is a relevant parameter. This combination, however, does
not differ much from YI+KI1 so that the latter quantity can be



onset of propagation). We found that, whereas the value of Eeff
was quite stable, differing by not more than a few percent fjom
one statistical sample to another, the value of Max (KI+KII)
fluctuated significantly (reaching high values in those samples
where two very .closely spaced crack tips could be found). The
average <Max (KI+KlI)> over several statistical samples increases

with crack density P=N 2/A (N is the number of cracks in a
repiesentative area A) increasing; it may thus seem reasonable to
argue that the value of Eeff can be used as an indicator of the

2 2fracture-related parameter Max (1I4KII). (since both quantities

are monotonic functions of 9). It should, however, be mentioned2

that (1) unlike Eeff, the value of <Max (KI+KII)> increases not
only with p but, also, as both the number of cracks N and the

representative area A increase while keeping p constant (or even
decreasing!) and (2) it is unclear whether, in view of a
significant fluctuation of Max (KeI+KiI) from one crack array to
another, the average (over a number of statistical samples) value

2. 1
of Max (X+KII) can be used as a representative quantity for any
given crack array.

4. STRONG AND WEAK INTERACTIONS. CLUSTERING OF CRACKS

As discussed in [4], crack interactions that are strong in
terms of their impact on SIFs may be weak in terms of their impact
on the effective elastic constants. Indeed, as is well known,
contribution of a given crack into the overall strain of a solid
with cracks is 6 = (<b>nm-n<b>) (21/A) where/b> is the average
displacerent discontinuity across the crack line. This implies
that the contribution of a given crack into the reduction of the
effective stiffness is proportional to <b> In many cases,
interaction of a given crack with other cracks will produce a
significant increase in SIFs and will, thus, be important from the
point of view of fracturing, whereas the average displacement
disccntinuity~b>and, therefore, the effective moduli, will be
affected by interactions insignificantly. (Such situations are
typical for the collinear cracks).

A closely related issue is that the maximal values of SIFs
attained in a crack array are highly sensitive to clustering of
cracks. Fic. 2 illustrates this statement: Max (K +KII) is,
typically, substantially higher in the configurations of the type
2b as ccr.pared with configurations of the type 2a.

//

Fig. 2. Clustering of cracks
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At the same time, the effective elastic moduli exhibit a low
sensitivity to clustering, i.e. the difference between the values
of Sijkl for the configurations 2a and 2b is generally
insignificant (provided the overall crack density is the same).
Thus, monitoring the change in effective elastic constants may not
necessarily detect the onset of strong crack interactions and
clustering of defects - events that are crucially important from
the point of view of progression towards failure.

5. CRACK-MICROCRACK INTERACTION PROBLEM

The absence of correlation between the effective elastic
constants and the fracture-related properties of a cracked solid
is particularly apparent in the problem of crack-microcrack
interactions. As has been found in [5-7], the microcracks located
in the short range interaction zone (several microcracks closest
to the main crack tip) produce a dominant effect on the SIFs at
the main crack tip, as compared with the total impact of all the
microcracks located farther away (this can also be seen from two
examples considered in [8,9]); due to a high sensitivity of the
interaction effect to the exact positions of microcracks in the
short range zone, the SIFs at the main crack tip fluctuate
significantly and even qualitatively (from "shielding" to
"amplification") from one sample of the microcrack statistics to
another.

This means that there is no statistically stable effect of
stress ":hiel3ing"; on the contrary, being conservative, one may
conclude that the overall effect of interactions with microcracks
is the one of "enhancement", particularly in the 3-D
configurations [5,7]. (This does not exclude, of course, other
possible mechanisms of toughening due to microcracking, like
expenditure of energy on nucleation of microcracks; neither does
it exclude the possibility of stress shielding for some special
ricrocrack arrangements, like an extremely dense array of
ricrocracKs parallel to the main crack [10)). At the same time,
modelling of the microcracked region by an effective elastic
raterial of reduced stiffness would predict that the effect of
interactions is the one of stress shielding - the result that
appears to be incorrect.

Ano.ther important effect of interactions is the appearance of
"secondary" modes on the main crack, due to stochastic asymmetries
in the microcrack field, i.e. KII under mode I remote loading (or
KI under shear remote loading). Since the appearance of mode II
SIF promotes crack kinking, this may be partially responsible for
an irregular shape of crack paths in brittle microcracking
materials. This effect is obviously, missed if the microcracked
zone is modelled by an effective elastic material. This indicates
that modelling of the microcracked region (at least, of its short
range zone that produces the dominant effect) by an effective
elastic material may not be adequate, in the sense that there is
no simple correlation between the reduction of stiffness of the
damage zone and its impact on the SIFs at the main crack tip.

6. CONCLUSION

It appears that there is no direct correlation between the
effective elastic constants and the fracture-related properties of
a solid with multiple cracks. Physically, the absence of such
correlation has a clear explanation: the fracture-related
quantities (like SIFs) are highly sensitive to local fluctuations



of the crack array geometry. The effective elastic constants on
the other hand, are the volume average properties which are
relatively insensitive to such fluctuations.
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THE FRACTURE RESISTANCE AND STRENGTH OF BRITTLE MATRIX
COMPOSITES

F. ZOK
Department of Materials
Col'ege of Engineering
University of California
Santa Barbara, CA 93106

ABSTRACT. The fracture resistance and fracture strength of brittle matrix components have been examined
through a combination of experimental and modelling studies. R-curve measurements on both
fiber-reinforced and ductile-reinforced composites have been correlated with models of crack bridging. An
important feature of the measurements and calculations is the strong influence of specimen size on fracture
resistance. The results are used as a basis for the development of an analytical model to predict the fracture
strength of composite materials.

1. Introduction

It has now been well established that many brittle matrix composites exhibit R-curve behavior, i.e.
their fracture resistance increases with crack extension. The R-curve is due mainly to bridging
processes in the crack wake. Specifically, intact particles or fibers exert closing tractions on the
crack faces, thus reducing the stress intensity factor at the crack tip. This behavior has been
observed in a broad range of materials including fiber-reinforced ceramics [1-51 and cements [6.7 ),
metal-reinforced ceramics [8-10] and intermetailics [11-12], and some monolithic ceramics
[13-19].

The fracture resistance can usually be expressed as the sum of two components,

KR = Ko + Kb (1)

where Ko is the initial fracture resistance and is typically of the same order as the fracture
toughness of the matrix itself. The term Kb is the component due to the bridging ligaments and is
described by [20]

a
K b r= c(x) F -,Ldx

Kb = ( a W (2)

where a is the total crack length, x is the distance behind the crack tip, W is the specimen width, ,a
is the crack extension, c (x) is the spatial variation in the bridging stress and F is the Green's
function applicable to the geometry under consideration. It should be noted that when the crack
opening displacement becomes sufficient to break the ligaments furthest from the crack tip, the
length L of the bridging zone reaches a saturation level and thus the upper limit on the integral must
be replaced by L.
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In most cases the stress distribution o (x) cannot be measured directly and so is inferred from
experimentally measured R-curves and equations (1) and (2). The bridging stress so obtained is
then compared with the results of micromechanical models which take into account the details of
the bridging process. To conduct such comparisons, an appropriate expression for F must be
selected. It should be noted that the expression applicable to small scale bridging conditions
(F = la'/2x) is not valid for specimen geometries in which the bridging zone length is a
significant fraction of other in-plane specimen dimensions. This result has not been recognized in
some studies [ 16,17) and has lead to some confusion about both the effects of specimen geometry
on R-curve behavior and the magnitude of the bridging stress. Such effects have recently been
examined in detail 121].

The purpose of this paper is twofold. First it demonstrates that R-curve behavior is indeed
dominated by bridging processes in both fiber-reinforced and ductile reinforced composites. This
is accomplished through a combination of experimental measurements, micromechanical modelling
and microstructural observations. Emphasis is placed on understanding the effects of specimen
geometry on the measured fracture resistance. Furthermore, the effect of reinforcement orientation
in ductile-reinforced composites is examined. These effects are important in composites containing
randomly oriented metal fibers, such as those recently developed by Lange et al. [22]. The second
purpose is to illustrate how R-curves can be used to predict the fracture strength of composites. In
particular, the effects of the spatial variation in the bridging stress, the size of the the reinforcement
and the size of the initial flaw are considered.

2. Fracture Resistance

2.1 MEASUREMENTS

Standard testing geometries have been employed for the R-curve measurements, including compact
tension specimens and pre-notched 3 point and 4 point bending beams, designed in accordance
with ASTM standards [23]. The fracture resistance calculations were based on the usual linear
elastic formulations, using the applied loads and the length of the matrix crack. Some tests were
interpreted to observe microstructural changes.

A variety of composite materials have been studied, including a metal-reinforced ceramic. a
model system consisting of a brittle polymer matrix and metal reinforcements, and a
fiber-reinforced glass ceramic. Pertinent details of the microstructures are described in subsequent
sections; additional details can be foun! in Refs. [51, [21] and [241.

2.2 DUCTILE REINFORCED COMPOSITES

Two ductile reinforced composites were examined. The first was A1203 reinforced with randomly
oriented, continuous fibers of an Al 4% Mg alloy, with a metal volume fraction of = 23%. The
processing route is described in detail in Ref. [22]. The second was a model system consisting of
a polymethylmethacrylate (PMMA) and continuous Al wire reinforcements. It was fabricated by
aligning the wires between the PMMA sheets and hot pressing at 200"C for several hours. The
PMMA/AI composite has numerous advantages, including ease of fabrication and good control of
the orientation and volume fraction of reinforcements. Furthermore, the wires can be extracted
from the composite by dissolving the matrix and thus the in-situ flow properties of the
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reinforcements can be measured directly. Typical micrographs of both composites are shown in
Figs. I and 2.

Figures 3 and 4 show the R-curves for the A120 3/AI composite and two of the PMMA/AI
composites. The reinforcements in the PMMA/AI composites were aligned perpendicular to the
crack plane. The curves for both materials are characterized by an initial fracture resistance Ko
equivalent to the fracture toughness of the matrix (3 MPa N-I for the A1203 and I MPa - for
the PMMA), an intermediate region where the fracture resistance increases gradually and finally a
region in which the resistance apparently increases very rapidly with crack extension. As shown
later, the rising portion is symptomatic of large scale bridging and is therefore not representative of
the true fracture resistance. Microscopic examinations of the tested specimens reveal the presence
of ductile ligaments across the crack faces, an example of which is shown in Fig. 5.

A simulation of the R-curves for the PMMA/AI composites was conducted assuming that the
bridging tractions are uniform (as in the Dugdale zone model) and equal to the ultimate tensile
strength of the Al wire reinforcements (80 MPa), as measured in a tensile test of the wire itself.
The choice of the bridging stress can be justified on the basis that the flow stress of the Al wire
increases rapidly from the yield point to the ultimate strength and subsequently remains constant
over most of the plastic straining history [2 11. Furthermore, the debond length is much larger than
the wire radius (Fig. 5) and thus plastic constraint effects can be neglected 125,26]. The fracture
resistance is calculated from equations (1) and (2) using an expression for F applicable to the
present specimen geometry [20,21]. The agreement between theory and experiment is excellent for
composites containing 3% and 10% Al (Fig. 4), thus indicating that the toughness enhancement is
indeed attributable to a crack bridging mechanism.

In addition, the computed R-curves for infinitely large specimens of the same material are shown
on Fig. 4 for comparison. These correspond to the behavior under small-scale bridging conditions
i.e. when the bridging zone length is small relative to all other in-plane specimen dimensions.
Evidently the R-curves for the finite specimen geometries are appreciably larger than those
corresponding to the infinite specimen, even at relatively small crack extensions. The discrepancy
is attributable to large 0 cale bridging in the finite geometry and emphasizes the need to account for
size effects in interpreting R-curve behavior in composite materials.

A similar simulation was conducted for the A1203/Al composite, again assuming uniform
bridging tractions, and is shown on Fig. 3. In this case, selection of the bridging stress is
complicated by the fact that the metal reinforcements are oriented randomly in space and thus do not
contribute equally to the fracture resistance. Consequently, equations (1) and (2) were used along
with the experimental data to infer an average ligament stress of 110 MPa: this corresponds closely
to the average between the initial yield stress (70 MPa) and the ultimate tensile strength (170 MPa)
of the AI-Mg alloy [21]. The shape of the computed R-curve is in good agreement with the
experimental data, provided the finite geometry is taken into account. The R-curve corresponding
to small-scale bridging conditions is also shown and again differs substantially from the
experimental data obtained on the finite specimen geometry.

Though the R-curve data for the A]20 3/AI composite are seemingly described adequately by the
Dugdale zone model, cognizance must be taken of the fiber orientation distribution and its role in
the crack bridging process. To examine orientation effects in ductile-reinforced composites, a
series of PMMA/A1 composites containing a symmetric arrangement of inclined wires was tested.
The composites contained 4 layers of equally spaced wires with a metal volume fraction of = 3%.
The wires in the two outer layers were aligned parallel to one another but were inclined at an angle
20 to the wires in the two inner layers. The compact tensions specimens were then machined such
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that the wires were inclined symmetrically at angles of ± 0 to the crack plane, as shown
schematically if, Fig. 6. Figure 7 shows the measured R-curves for values of 0 ranging between
0" and 65". Though they exhibit characteristics of large scale bridging, the curves provide a
relative measure of toughening due to bridging since all specimens are the same size. The data
show that the toughening contribution Kb decreases substantially with 0: it drops by a factor of -2
as 0 goes from 0" to 45" and is negligible for 0 > 65".

The reduction in Kb with 0 is attributable to two sources. First, the number of wires intercepted
by the crack front per unit area of crack, NA, decreases with 0 as:

__f

NA - rR os 0 TR7 (3)

where f is the metal volume fraction and R is the wire radius. Second, the inclined fibers require a
smaller load to be plastically deformed than those which are aligned perpendicular to the crack
plane because of the imposed bending moment. At the extreme, the wires inclined at a steep angle
act essentially as end-loaded cantilever beams and thus contribute minimally to the crack closing
tractions and the corresponding toughness Kb. A more detailed examination of orientation effects
in both the PMMA/A1 and A1203/A1 composites is currently in progress and will be presented
elsewhere [24]. For present purposes it is sufficient to note that such effects are important in the
fracture resistance behavior of ductile-reinforced composites and must therefore be incorporated
into micromechanical models of crack bridging.

An important feature of the present measurements is the absence of a steady-state fracture
toughness, Kss, expected to occur when the ligaments furthest from the crack tip begin to fail.
This behavior arises because of the large scale bridging effects at large crack lengths. Similar
trends have been observed in other materials exhibiting R-curve behavior [16,17] and suggest that
the present techniques are not suitable for obtaining steady-state toughness values. An alternate
technique, known as the "work of rupture test" [27], was thus employed in this study to evaluate
Gss (the steady-state strain energy release rate) for the A1203/Al composite. The measurements
yield an average value of Gss 400 Jm -2 , which corresponds to Kss-- 10 MPa m /

(assuming an elastic modulus of 250 GPa) [24]. This value is significantly lower than the apparent
fracture resistance at large crack lengths (-30 MPa ml/ 2)measured in the previous tests but is likely
more representative of the true asymptotic fracture resistance. The magnitude of the discrepancy
again demonstrates the problems associated with large scale bridging in the R-curve measurements.

2.3 FIBER REINFORCED CERAMICS

A similar series of R-curve measurements were made on a lithium aluminosilicate (LAS) glass
ceramic reinforced with continuous SiC (Nicalon) fibers. The composite contained a symmetric
arrangement of 0" / 90" cross plies and a fiber volume fraction of 0.44. Beams suitable for bend
testing were machined from the composite plates, with the notch front oriented perpendicular to the
plane of the laminate (Fig. 8). The beams were annealed in air at 800" C for periods ranging from
I hto 16 h [5].

Figure 9 shows a summary of the R-curves for the LAS/SiC composites. The curves are similar
to those of the ductile reinforced composites in the sense that they start at a relatively low level of
fracture resistance (-5 to 6 MPa m /") and increase rapidly with crack extension. Once again,
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however, the data are influenced by large scale bridging effects, particularly at crack extensions
1mm.
Insight into the origin of the rising R-curve is provided by microscopic observations of the side

surfaces of the tested specimens (Fig. 10). Evidently some of the fibers fracture along the plane of
the matrix crack whereas others fail at some distance away. Examples of the latter are indicated by
arrows in Fig. 10. The embedded fibers are then pulled out of the matrix during crack growth and
thus exert tractions on the crack faces.

Near the crack tip the bridging stress associated with fiber pull-out can be expressed as [5]

C(x) = 2 I-fh 1 - Ko
R Eh (4)

where t is the sliding resistance of the fiber-matrix interface, h is the average pull-out length, Ko is
the critical value of the crack tip -tress intensit, factor and f is the volume fraction of fibers oriented
perpendicular to the crack plane (f = 0.22). Provided the pull-out length is sufficiently large, the
second term in the square brackets in equation (4) can be neglected and the bridging stress then
taken as

2,r f h
ab R (5)

This approximation allows for a preliminary comparison between theory and experiment, taking
into account the large scale bridging effects. Fig. 9 indicates that the measurements are consistent
with the computed R-curves for a bridging stress in the range of 80 MPa to 160 MPa. Combining
this result with measurements of pull-out length [281, equation (5) gives a sliding stress of
-75 MPa to 250 MPa. These values are broadly consistent with those inferred from pull-out
measurements [28], but somewhat higher than those measured by push-through tests (291.

2.4 DISCUSSION

The correlation between the computed and measured R-curves in both the ductile reinforced and
fiber reinforced composites indicates that the toughness enhancement is attributable to bridging
processes in the crack wake. The important parameters in the resistance behavior are the spatial
variation in the bridging stress and the specimen geometry via the function F. In fiber-reinforced
composites the bridging stress depends on the interfacial sliding stress and the average pull-out
length. In ductile-reinforced composites the bridging stress is governed by the flow characteristics
of the metal, the degree of debonding, as well as the orientation of the reinforcements with respect
to the crack plane.

An important feature of the present measurements is the marked influence of large scale bridging
on fracture resistance. These effects have been incorporated into the simulations through the use of
an appropriate Green's function. In general, the magnitude of the large scale bridging effects can
be described by the ratio Kb/K-, where Kb is the increment of toughness due to bridging in the
finite specimen and K ' is the corresponding increment in an infinite specimen. The ratio
Kb/K;* - 1 when small-scale bridging conditions exist; conversely, Kb/K- >> I when the
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bridging zone length is on the same order as the crack length and specimen width. Equation [2]
gives

K a / F~a dLb f F x a )dx

Kb J W a (6)

Figure 11 shows a plot of Kb/Kr against the normalized crack length, a/W, for various values of
notch depth, ao/W, assuming uniform bridging tractions. The curves show a strong dependence of
apparent fracture resistance on the relative size of the bridging zone.

It is of interest to note that the preceding calculations can be used in the design of specimen
geometries for R-curve measurements, analogous to those of the ASTM Standards for ductile
materials. Specifically, the specimen dimensions required to maintain small scale bridging
conditions can be determined. First, an estimate of the steady state bridging zone length is
required: this is usually available from information about the nature of the bridging process and the
scale of the microstructure. From the curves in Fig. 11, appropriate combinations of a and W are
then selected such that Kb/K; remains below some prescribed level for all resistance
measurements up to the saturation level. As a general rule, if the allowable error in Kb is 5 %, i.e.
Kb/Kb < 1.05, and the initial notch depth ao/W is between 0.1 and 0.5, then the specimen
width should be at least 40 times the bridging zone length. This figure is essentially the same as
the minimum ratio of specimen width to plastic zone size in ductile materials, as prescribed by
ASTM Standard E399 [23].

In addition to the problems of large scale bridging, there exist other effects associated with
specimen geometry and mode of loading which may influence resistance measurements in
composites. First, the crack opening profile in bending is generally greater than that corresponding
to a uniform remote tension, as shown schematically in Fig. 12. Thus, in bending, the bridging

stress reaches a maximum at smaller distances from the crack tip, the steady state bridging zone
length is shorter, and the slope of the R-curve is higher. Second, the rotational effects in bending

result in a crack opening profile which depends on crack length. Specifically, the increase in

specimen compliance associated with crack growth causes the crack opening displacement to

inci ease more rapidly with distance from the crack tip, as shown schematically in Fig. 13a.

Consequently, the spatial variation in the bridging stress is altered, as is the length of the bridging
zone at steady state (Fig. 13b). The resultant R-curve may then exhibit a maximum at the point at
which the crack opening effects become larger than those due to large scale bridging (Fig. 16c).

Such behavior has recently been observed in TiA1/TiNb composites and has been modelled

accordingly [30].

3. Strength

in most recent studies of fracture of composite materials, the emphasis has been focussed mainly
on understanding the R-curvc behavior and the steady state toughness. In designing structural
components with composites, it will also be necessary to understand the relationship between
fracture resistance KR and fracture strength 7f. However, this relationship is more complicated

than that in monolithic ceramics where the two are linked to the defect length via Griffith's
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Fig. 12 A bhematic diagram showing the effects of mode of loading (tension vs bending) on
the crack opening proffle, the bridging tractions and the R-curve.
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Fig. 13 A schematic diagram showing the influence of crack length on the crack opening
profile, the bridging tractions and the R-curve in a bend specimen. Here urn is the
crack opening displacement necessary to fracture the bridging ligaments.
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equation. Here the criteria for crack stability involves both the magnitude of KR and the slope of
the KR - Aa curve. A brief summary of the procedure required to evaluate the fracture strength
from the R-curve and some typical results are presented below. The effects of the spatial variation
in the bridging stress, the size of the reinforcements and the initial defect length are considered.
The results illustrate that the enhancement in strength is appreciably lower than the enhancement in
steady state toughness, particularly for short cracks. Furthermore, they demonstrate the need to
understand the influence of debonding in ductile-reinforced systems on both the fracture toughness
and fracture strength.

3.1 FORMULATION OF THE PROBLEM

The criteria for crack stability under mode I loading conditions are

K = KR (7a)

dK = dKR
and da da (7b)

where K is the mode I stress intensity factor associated with the remote stress a. A graphical
representation of these criteria is presented in Fig. 14. In this diagram, the fracture resistance is
plotted against crack extension, Aa, whereas the applied stress intensity factor is plotted against the
total crack length, ao + Aa. At each level of applied stress, the stress intensity factor is
represented by a parabolic curve (shown by the dashed lines). At a critical stress the K curve
intersects the KR curve and the crack begins to grow stably (point A). Further increases in stress
result in increases in both K and KR such that the crack grows stably along the trajectory A-B.
Finally. at point B, the incremental increase in K with Aa exceeds the corresponding increment in
KR and hence the crack becomes unstable.

In the present calculations it is assumed that the R-curve is attributable to the bridging tractions,
as described by equations (1) and (2). The bridging tractions are assumed to take the form

p UM (8

where u is the crack opening displacement, um is the critical value of u at which the ligaments fail,
N is an empirical coefficient which describes the shape of the stress-displacement curve, and ap is
the peak bridging stress (at u = 0). Three values of N are considered here: 0.1, 1 and 10. The
corresponding o - u curves, shown in Fig. 15, encompass the range of behavior expected in real
composite materials. In order to examine the effects of the spatial variation in the bridging
fractions, ap is selected in such a way that the total work required to fracture the ligaments,
ou mR a d (u/R), is constant. Furthermore, small scale bridging conditions are assumed to exist,

so that the crack opening displacement near the crack tip is governed by the local stress intensity
factor Ko and increases as x I .

The results are conveniently expressed in terms of a number of non-dimensional parameters,
defined by [33]:
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where Aac is the crack extension at the point of instability (point B in Fig. 14) and L is the steady

state bridging zone length. The parameters T" and K describe the enhancement in strength and
toughness, respectively, while (o represents the work necessary to fracture the ligaments.
Furthermore, p and cc are measures of the particle size and initial crack length, respectively,
normalized by an appropriate length parameter.

From equations (1), (2) and (7) - (9), the instability point Akc is defined by

po (N +1) ,A 02-+ N -1=0

2N ALeX N+11  (10)

463



The solution for Akc is obtained through an appropriate numerical method and the strength

enhancement 11 then evaluated from

p co (N +f1) Xy2 ( 1 + 2  Y2 (1-A>'2N 1* _XC¢ (C

The steady state toughness enhancement is described by

K = p o0 (12)
2

3.2 RESULTS

To establish some of the important trends, the preceding formalisms have been used to calculate r
and K for various values of p, X and N. The results are presented as diagrams with ri as the
ordinate and K as the abscissa. In the present calculations W is taken as 10-3 and 8 as 1.

Figure 16 shows the effect of the initial defect length (through the parameter a in the 11-K
relationship for N = 1. Also shown is the behavior for an infinitely long crack (or, equivalently.
an infinitely steep R-curve): in this case T1 = Kc, as predicted by Griffith's equation. The results
show that '1 initially increases with K at a rate of unity, but subsequently reaches a steady state
value, independent of K. The steady state value of ri increases monotonically with the initial defect
length. Thus, for relatively short cracks, the strength enhancement is only a small fraction of the
toughness enhancemcnt. In this case, the instability point (B) in Fig. 14 is very near the point of
initial crack growth (A) and consequently most of the R-curve is not utilized in improving the
fracture strength.

Figure 17 shows a similar ri-K plot for 3 different values of N and a = 106. At small values of
p (and consequently small K), the shape of the stress distribution has a negligible effect on the
strength enhancement. However, as p and K increase, the strength enhancement decreases with N.
This result demonstrates the importance of the bridging stresses very near the crack tip: for a fixed
amount of work, (o. it is desirable to concentrate the bridging stress into the region close to the
crack tip (as is the case for N = 0.1) rather than distributing it uniformly over the bridging zone.
In principle, this can be accomplished by introduci.,g strongly bonded ductile particles so that the
plastic constraint associated with a small debond length increases the bridging stress near the crack
tip. In practice, however, the constraint effects are accompanied by reductions in both the plastic
stretch to failure, um, and the total work, co [31 1, suggesting that there exists an optimal debond
length at which 11 is maximized. Indeed, recent experimental work on lead-glass composites [32]
indicates that such an optimum does exist and that it depends on the initial defect length and the
particle size.
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4. Conclusions

The results of the present study demonstrate that R-curve behavior in composites is attributable to
bridging processes in the crack wake. Good correlation between experiment and theory is obtained
when the finite specimen geometry is incorporated into the model of crack bridging. However,
issues regarding the effects of fiber orientation and specimen geometry on R-curve behavior still
need to be resolved.

The influence of a number of microstructural variables on fracture strength has also been
explored. The calculations indicate that the strength enhancement attributable to bridging processes
is relatively small for short cracks. Furthermore, they demonstrate the importance of the shape of
the bridging tractions in crack stability. Trends obtained from these calculations may be useful in
designing composite microstructures with optimal strength and toughness characteristics.
However, additional experimental evidence relating fracture resistance and fracture strength is
required to validate the model.
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Introduction

Research in fiber reinforced concrete (FRC) has been ongoing for at least two decades.
Yet the use of this material at the present time, while growing, is still relatively limited.

There are even concerns about the effectiveness of this material in relation to time
dependent property deterioration. Although FRC has been repetitedly demonstrated to be
an improved structural material over plain concrete, its present commercial 'push' is more
on 'reducing shrinkage cracks'. In other words, after curing, the presence of fibers in
concrete is not expected to contribute to the properties of this material. The limited volume
usage, and its limited functionalrole raise the question of what has gone wrong in the
research and development of this material. A collorary of this question is: Despite the many
years of research (certainly earlier than fiber reinforced ceramics), why is it still much less
an engineered material than say, fiber reinforced ceramics or polymers?

To answer the above questions may require a full scale investigation by itself, involving

an understanding of both the technical deficiencies of and non-technical demands place on

FRC, and is surely z)utside the scope of this paper or this workshop. What could be said at
this point is that a great deal of research in FRC are empirical in nature, which makes it

difficult to generalize the findings of a piece of research. While often a specific

performance of FRC is demonstrated (e.g. flexural capacity), it is not quantitatively related
to the fundamental mechanical properties of the material, even less to the material structure.

This results in difficulty in furthering the design of FRC. In addition, until in very recent
years, the processing of FRC is probably least studied among all modem composites. This
probably stems from the fact that the mixing of concrete is relatively simple, and the
making of FRC therefore involves just adding fibers into the concrete mix. The drawback

of this apparent simplicity in processing is that the material structure is seldom well
controlled or even received any critical attention.
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Despite these drawbacks, FRC is once again receiving its due attention, partly because

of the commercial need of finding substitute materials for asbestoes cement which has been
found to be carcinogenic and is being phased out in most industrialized countries, and
partly because of the increasing availability of a wide variety of fiber types and geometries
for use as reinforcements. In addition, the increasing ease of making high strength
concrete and the recognition of the brittleness and difficulty in quality control of this
material is begging for a solution in the form of fiber reinf-rement.

These recent developments present an opportunity for realizing the structural utilization
of fiber reinforced concrete. The lack of understanding in processing, in its linkage to
material structure, in its effect on material properties which directly influences the
performance of FRC, present immetise challenges to the research community. Although it
is not the intention of this paper to review the complete picture of performance-property-
process-structure relationships, it is still useful to have a brief overview of these
relationships to place the more detailed discussions to follow in the context of this
framework.

The Performance-Property-Process-Structure Relationship

Performance, property, process and material structure form the apexes of a tetrahedron
schematically shown in Figure 1. Their relationship to one another was proposed as a
general framework for the study of modern engineered materials by the National Research
Concil (1990). For our present purpose, we shall restrict the use of this framework to
FRC.

The performance of FRC may include durability, reliability and safety,
manufacturability, sesimic resistance (energy absorption capacity), flexural and shear
capacity and other desirable features of the specific structure which ultilize this material.
These are elements which the end user and the structural engineer normally would like to
see improvements in.

The important properties of FRC may include stiffness, strength, fracture toughness
and others. In the past, most construction codes are concerned with stiffness and (usually
compressive) strength. However, the effectivness of fiber reinforcement in improving
these properties are usually insignificant. This may be one of the reasons for the lack of
appreciation for the unique structural property which FRC offers. These include for
example, the tensile strength and toughness which are expected to influence several of the
performance parameters such as reliability, seismic resistance, and shear and flexural
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capacities.

As mentioned earlier, until recently, both processing and material structure
received little attention from researchers. For FRC, the use of pultrusion, intense shear
rolling, infiltration, high frequency vibration processing techniques have been attempted
with varying successes. They are also responsible for some of the more high performance
FRC materials such as SIFCON and reinforced MDF cement, that have surfaced in recent
years. The material structure of FRC includes the fibers and their orientation, the cement or
concrete matrix and the pores in them, and the fiber/matrix interface. Observational studies
of interface microstructure (see e.g. Mindess et al, 1988) have received much attention in
recent years, but quantitative links between interface observations and bond properties are
rare. These links are needed to relate interface properties to composite properties, and to
relate interface structure to processing, and hence processing to composite properties and
performances.

Within the framework of the tectrahedron described above, it can be seen that research
in FRC is still quite deficient. This framework offers tremendous opportunity for
exploration and developmnt of FRC as an engineered composite. The following cites a
more specific example of the challenges in FRC research in the context of the performance-
property-process-structure framework.

Development of High Strength High Ductility Concrete

In recent years, the strength of concrete has steadily improved such that high strength
concrete with compressive strength exceeding 10,000 psi can be readily made in most
laboratories. The problem with this material is brittleness and lack of reliability, the latter
associated with the increased sensitivity of processing flaws. Thus, its present use is often
limited to those structural components requiring additional steel reinforcements or with steel
jacketing. The use of additional steel reinforcement defeats the original intent of using less
material with less weight for the same structural capacity. The use of steel jacketing
restricts the versatility of the application of this material. Thus it is very natural that
significant research is currently being pursued in using fibers for regaining some of the lost
ductility. If fiber reinforcement is successful, a high performance high strength-high
ductility concrete which could be utilized reliably would result.

Unfortunately, the fiber type and volume fraction suitable for reinforcing normal
strength concrete becomes inadequate when used for reinforcing high strength concrete.
For example, figure 2 (Green, 1989) shows the post-cracking tensile behavior of a high
strength mortar reinforced with 0.6 volume percent of a high strength polyethylene fiber
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(fiber length = 6.4 mm). Although the fracture energy has been significantly improved,
the brittleness of the material remains high due to the rapid drop in strength after peak. For
effective reinforcement, it appears necessary that the post cracking strength must be of
comparable value to the cracking strength, in addition to having a high fracture energy.
Thus it is necessary to understand the origin of the post-cracking strength as a composite
property.

It can be shown (Li, 1990) that the post-cracking strength for a 3-D random fiber
reinforced brittle matrix composite is given by

2 = (1)

where c is the interface bond strength, Lf is the fiber length, df is the fiber diameter, Vf is
the fiber volume fraction and the snubbing factor g is given by:

g 4+f 2 (1+e2'J (2)

in which f is a snubbing coefficient. The snubbing factor is associated with the additional
resistance when fibers are pulled-out at various angle to a matrix crack. In contrast to a
continuous fiber composite where the matrix crack plane usually lies in a direction normal
to fiber alignment direction, fibers bridging across a matrix crack in a discontinuous
randomly oriented fiber reinforced composite can be oriented in any direction. When a
flexible fiber is pulled out in this manner, the exiting fiber acts as if it were passing through
a friction pulley. The result is a pull-out load which is as much as three times for high
angle pull-out compared to that of a straight pull-out of polypropylene monfilaments
embedded in a normal concrete matrix (Li et al, 1989, Figure 3a). Pull-out energy of up to
four fold has been recorded (Figure 3b). Preliminary result suggests that these increases in
pull-out force and energy are limited by the tensile and/or crushing strength of the cement
matrix. Surface spalling of normal strength mortar has been observed at high angle pull-
out, as is reflected by the large amount of scatter in the high angle data in Figures 3a and
3b. The spalling phenomenon has also been revealed in scanning electron micrograph of
fracture surfaces of Spectra (a high strength polyethylene) fiber reinforced normal strength
concrete (Figure 4).

The typical range of the snubbing coefficient appears to be between 0 and 1. Figure 5
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shows the snubbing factor g plotted against the snubbing coefficient f. At the high end of
f, the post cracking strength can be increased by as much as 2.3 times in comparison to the
case where no snubbing occurs.

Equation (1) has been used to predict the post-cracking strength of steel and Spectra
fiber reinforced concrete. The comparison with experimental data is shown in Figure 6.
The Post-Cracking Strength in Figure 6 has been normalized by the interfacial bond
strength r. For the steel FRC (data from Visalvanich and Naaman, 1982), a bond strength
of 4 MPa has been assumed. For the Spectra FRC, an interfacial bond strength of 1 MPa
(Li et al, 1989) is used. These comparisons suggest that the snubbing coefficient for steel

fiber in normal strength mortar is approximately unity, although the well known effect of
fiber plastic bending (Morton and Groves, 1974) is not accounted for in this calculation.
However Morgan and Groves (1976) suggested that the bending effect is probably small
compared to the snubbing effect based on limited pull-out test of steel fibers embedded in
an epoxy matrix. For Spectra fibers, the present limited data suggest that f-0.3 in a normal
strength matrix and f-0.55 in a high strength matrix (7 day compressive strength of
80MPa). However, pull-out tests based on polypropylene and nylon monofilaments have
indicated a snubbing coefficient as high as 0.7 and 0.9 respectively.

Although high strength concrete demands higher post-cracking strength for effective
reinforcement, it has been found to have certain advantages over normal concrete in its
capability of producing a higher'post-cracking strength. For example, Table 1 (Li et al,
1989) shows the effect of matrix strength on pull-out load of nylon monofilaments. In one
sample, the fiber was pulled out normal to the matrix crack plane, whereas the other sample
involved the fiber pulled out at an angle of 600. For the normal pull-out case, the average
of 8 tests for the higher strength matrix shows a 6.3% increase over that for the normal
strength matrix, but the standard deviation was large enough not to attach much
significance to this increase. For the 60 pull-out, the average of 8 tests for the higher
strength matrix shows a 127% increase over that for the normal strength matrix. This
increase was significant in comparison to the standard deviation recorded in the test data,
and suggests that while the interface bond strength may not have increased much, if at all,
the snubbing effect appears to have been enhanced for the fiber pulled out from the higher
strength matrix, presumably due to the better spall resistance of the higher strength matrix.
These observations are consistent with that of measured post-cracking strength for Spectra
fiber reinforced normal and high strength concrete, discussed above.

Apart from post-cracking strength, another primary property in reducing material
brittleness is the fracture energy of the composite. L! et al (1990) derived an expression for
the enhanced fracture energy G due to the fiber bridging mechanism in a 3-D random FRC:
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6=2L/ F(L,,f) (3)

where

G
G -- (4)(rV f)L, / d, )

14 L,/2 (5)

and the non-dimensional function F is

F = I f- W)I- '] eftp(O)U~z'- Q1- I-)cosO dodz' (6)
.=0 *.0 cOsO L L/e "

where the U(g) is the step function and g is defined as:

- Z- f- Lee - cos (7)

and p(z) and p(O) are probability density functions of fiber centroidal location z and
orientation 0 for a uniform random distribution of fibers. The step function U has been
included in the integrand in (6) in order to discount those fibers of length Lf exceeding
twice the critical embedded length Lc. These fibers will be broken instead of pulled out.

Figure 7 shows a plot of the normalized fracture energy as a function of the normalized
fiber length, based on equation (3), for different values of f. It is clear that while the
snubbing effect increases the fracture energy for short fibers, the maximum attainable
fracture energy Gmax is reduced for increasing f, due to increasing amount of fiber
ruptures. Thus, while the snubbing friction assists in attaining a higher post-cracking
strength, the maximum attainable fracture energy is simultaneously reduced. This is shown
in Figure 8.

From the above discussions, it is clear that the material structure -- in this case the fiber,
the matrix, and the interface all play a role in controlling the composite property,
specifically the post-cracking strength and the fracture energy.
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Apart from the snubbing effect, equations (1) and (3) also elucidate the dependence of
the post cracking strength and the fracture energy on the bond strength, the fiber volume
fraction and the fiber aspect ratio. They suggest that high fiber volume fraction and high
fiber aspect ratio is preferred for high post-cracking strength. However, this route presents
a difficulty in material processing. Conventional mixing of fiber in concrete limits the
volume fraction to a few (typically less than 2) percent and fiber aspect ratios of less than a
few hundred (typically less than 100). Larger fiber volume fraction and longer aspect
ratios cause lumping of the fresh mix, resulting in high porosity in the matrix. These large
pores tend to act as sites of internal cracks and can lead to significant strength loss.
Because high strength concrete typically employs a smaller water/cement ratio, this lumping
problem becomes even more serious than conventional concrete. Special processing
technique, such as the use of high frequency vibration, may be needed to compact the mix.

Conclusions

Although discussed only very briefly, and using only extremely narrow and specific
examples, the above presentation is meant to bring out the inter-dependencies between
performance-properties-processing-structure for the development of high strength-high
ductility concrete. Successful development of such an engineered material cannot be
achieved without appreciating the inter-dependencies and constructing solutions which take
advantage of the understanding of these inter-dependencies. In this process, it is also
recognized that micromechanics plays a significant role in quatifying the various links, and
especially the link between material structure and properties. In addition, the need for
studies in material processing is especially emphasized.

The tetrahedron shown in Figure 1 also suggest an approach perhaps foreign to the
development of construction materials -- the performance driven approach. If performance
criteria (e.g. durability determined by the life expectancy of the structure; or energy
absorption capacity determined by expected seismic load which may be imposed on the
structure) can be specified, then the required material structure could be developed to
achieve certain material properties using a certain processing route. In other words, a
material could be engineered to satisfy the required performance of a given structure in a
given environment. Certainly our current state of the art is far from this ideal, but that is
precisely the challenge we must face in the research and development of high performance
engineered FRC.
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Table 1: Effect of Matrix Strength on Pull-out of Nylon Monofilament

Pul-out Load (N)
Normal strength HCP High strength HCP

f = 00 4.91 5.22
(CV = 5.6%) (CV = 22.8%)

f = 600 11.85 26.94
(CV = 27.1%) (CV = 5.4%)

P60JPO = 2.41 5.16
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Figure 4: Scanning Electron Photomicrograph of Surface Spalls from the Fracture Surface

of Spectra FRC
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FAILURE CHARACTERISATION OF FIBRE-REINFORCED CEMENT
COMPOSITES WITH R-CURVE CHARACTERISTICS

YIU-WING MAI
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Department of Mechanical Engineering
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Sydney, NSW 2006
Australia

ABSTRACT. The failure of fibre-reinforced cement composites can be
characterised by the crack-resistance (R) curve approach. In short fibre
composites, where the fibres pullout rather than break, theoretical models are
presented for the prediction of the R-curve based on the constitutive equation
between the closure stress-crack face separation in the fibre-bridging zone at
the wake of the crack tip. The influences of specimen size and geometry and
the matrix fracture process zone on the R-curve are evaluated and compared to
experimental results. Using this crack-face bridging concept the Weibull
distribution of the tensile strength of short fibre composites is investigated both
theoretically and by computer simulation experiments. It is shown that not
only is the crack growth process stabilised but that the Weibull modulus is
considerably increased due to the R--curve effect. By including the slow crack
growth phenomenon in the theory the time-dependent strengths for short fibre
composites with R-curve characteristics are also predicted.

1. Introduction

It is now generally recognised that the failure behaviour of fibre-reinforced
cement composites cannot be adequately described by the conventional
one-paxameter fracture criterion such as the critical potential energy release
rate G, and the critical stress intensity factor Kc. When a crack develops in a
short fibre-reinforced composite we have a small matrix fracture process zone
FPZ) at the crack tip region where microcracking activities take place and a

fibre bridging zone (FBZ) at its wake where fibre-mtrix debonding and fibre
pullout occur, Figure 1. The size of these two zones depend largely on the fibre
aspect ratio, fibre volume fraction and specimen conflguration, Table 1.
However, it is the development of the FBZ that gives rise to stable crack
growth and the so-called crack-resistance (R) curve usually plotted in the form
of stress intensity factor (KR) versus crack growth (Aa). In these lecture notes

only those short fibre cement composites whose failure mechanism is
predominantly fibre pullout rather than fibre breakage are considered. Some of
the experimental difficulties associated with R-curve and matrix fracture
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process zone size measurements are first highlighted (Section 2). Analytical
modelling of R-curves consistent with the particular toughening mechanisms
are then described in relation to effects of specimen size and geometry and
influences of the matrix FPZ (Section 3). The application of R-curve in
prediction of tensile strength of short fibre cement composites is finally studied
both theoretically and by computer simulation (Section 4).

TABLE 1. Size of fibre bridging and matrix
fracture process zones for cementitious materials

Material Fibre bridg- Fracture Reference
ing zone process zone

(mm)

Asbestos fibre
- cement ~ 125 28 14.48
Cellulose fibre
- cement ~w s0 28 4
Steel wire-
concrete > 610 17
Steel wire-
cement 760 - 48
Glass fibre
- cement - 15 49

z X

"1 k 1

saturated fibre practre
0 bridging zone / zone

AOS 6 0m

continuous matrix crock

Figure 1. Fibre bridging (FBZ) and fracture process (FPZ)

zones at crack tip of a fibre reinforced cement composite.



2. Measurements of FBZ and FPZ for Fibre Cement Composites

In the experimental evaluation of the crack-resistance (R) curve it is required
to determine quite accurately the relative sizes of the fibre bridging zone (FBZ)
and the matrix fracture process zone (FPZ). Depending on the relative size of
the matrix FPZ it may or may not have to be included in the theoretical
analysis. Distinction of the exact boundary between the FPZ and the FBZ is
always difficult. Many direct and indirect methods have been used to measure
either of these two zones. These include optical and scanning electron
microscopy techniques, photography, staining and Moire' fringes, replicas,
electrical potential difference methods, mercury porosimetry, acoustic emissions
and compliance techniques. Foote [1] has given a review of these test methods
and their relative merits and usefulness for measurements of the FPZ and FBZ.
It is perhaps important to point out that the compliance method, so often
employed by the majority of investigators to measure crack length, is not very
accurate. The fibres bridging across the crack faces tend to reduce the
compliance of a stress--free crack of the same length [2J. Evaluation of crack
length from theoretical compliance calculations therefore underestimates its
true length (see Figure 2). Recently, Hu and Wittmann (3] have developed a"multi-cutting" technique to measure the FPZ of cementitious matrices and
the bridging stresses within this zone. Elegant and simple as this technique
may be, it is difficult to extend to fibre cement composites for the separation
and measurement of the FPZ and FBZ.

0/
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Figure 2. Fibre bridging effect on compliance measurements of a
DCB cellulose fibre cement mortar. Compliances C* and C refer to
presence and absence of FBZ respectively.



2.1 NEW METHODS FOI. FRACTURE PROCESS ZONE SIZE MEASUREMENT AND CRACK
GROWTH

The author and his co-workers have developed a new technique to detect the
crack tip position and hence to distinguish the boundary of the FBZ and FPZ of
fibre cements. An automated method of continuous crack length measurement
using a screen-printed conductive grid and a micro-computer is also given.
Details of these experimental methods have already been published elsewhere
[4]. In the following only the essential features are described.

Figure 3 shows a schematic diagram of the computer aided crack growth
monitor system and Fiure 4 gives the conductive grid pattern that was used for
a compact tension (CT) wood fibre cement composite specimen. There were 64
bars in eight blocks of eight allowing the crack to be measured over a distance
of approximately 140 mm. The bars were nominally 1 mm in width and had a
repeated distance of 2.14 mm. The conductive ink used consisted of finely
divided graphite particles dispersed in a vinyl resin binder and a butyl cellosolve
acetate solvent. In operation the computer scanned each bar on the grid serially
and tested each for continuity. When a broken bar was detected, indicating the
presence of a crack at that location, a voltage corresponding to its number was
sent to a plotter and a graphic display of the grid on a monitor showed that bar
as broken. With each scan the latest broken bar was detected, plotted and
displayed. This permitted the crack growth process to be clearly seen. Both
load-time and crack growth-time records could be simultaneously and
continuously obtained with this technique until final failure. Figure 5 shows the
results obtained for the wood fibre cement CT specimen. The complex nature
of crack grwoth was revealed by the bars recording breaks and sometimes
closures followed by a second break. The region of bars breaking, or the
"activity zone", was approximately 20 mm over the period of crack growth.
Table 2 compares the observed crack tip using optical microscopes and the
location of the activity zone. Quite clearly, the leading edge of the activity
zone gave a good measure of the real crack length and hence a plausible
demarcation of the FBZ and FPZ.

In order to measure the size of the matrix fracture process zone narrow
strips were cut from the CT specimen after crack growth had taken place.
Strips away in the unstressed region were also cut to represent the undamaged
material, Figure 6(a). The bending stiffness of crack strip was measured in pure
bending with the compressive surface facing the crack growth direction, Figure
6(b), and the location of fracture noted. In strips cut from the cracked (or fibre
bridging) region of the specimen, the failure sites would lie along the
prolongation of the machined notch. However, in the matrix fracture process
zone, the fracture sites were scattered. Figure 7 shows the variation of the
normalised bending stiffness with distance from the crack origin and the
locations of the failure sites. It is clear that these results support the general
concept discussed above. The crack length indicated here is about 80 mm which
agrees closely with the optical and computerised electrical methods shown in

able 2. Figure 8 plots the normalised bending stiffness results for four CT
specimens as a distance from the crack tip. The matrix FPZ size deduced from
this figure varies between 28 mm to 40 mm. Such a size is certainly not
negligible and it would seem that it must be properly included in the R-curve
modelling. However, as shown later in Section 3.5, its inclusion in the model is
not really necessary.
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TABLE 2. Crack length measurement using the computerised
electrical method and the section and bend stiffness test

Crack length (ram)

Specimen No. Optical Electrical B end stiffness
method conductive s eaurement

p bus/activity zon s

1 78 62-86 77
2 83 56-88 83
3 99 70-105 112

3. Crack-Resistance (Rt) Curve and Failure Characerstion

The crack-resistance curve is basically controlled by both "intrinsic" and
"extrinsic" variables. Intrinsic variables are microstructural in nature and
include the level of porosity, the fibre type and its surface treatment, the
residual stresses and the matrix properties. By changing these variables it is
possible to change the stress-displacement constitutive relations in the FBZ

and FPZ. Extrinsic variables are those of specimen geometry, size and loading
configuration which would affect the deformation of the FBZ and FPZ and
hence the crack tip shielding mechanisms. In the following sub-sections the
mechanics of crack-interface bridging and analytical modelling of specimen size,
geometry and matrix FPZ effects on R-curves are presented.

3.1 MECHANICS OF CRACK-INTERFACE BRIDGING

In fibre cement composites the single most important variable on the
crack-resistance curve is the closure stress (o)-crack face separation ()
relationship in the FBZ. Once this relation is known it is possible to predict
R-curves for different effects of size and geometry and alternatively the load-
deflection or moment-curvature diagrams for various types of structural
components. For the very simple situation of fibre debond/pullout the a-b
relationship can be worked out theoretically. If it can be assumed that the
mechanical shear bond strength r is a material constant then the force F to
pullout a fibre is F = rdr, where d and I are the diameter and embedded
length of the fibre. When the fracture surfaces have separated a distance 6 the
maximum possible pullout force is given by F,(1-26/L) where F. = ird L/2 and
L is the fibre finite length. The number of fibres per unit area of fracture
surface (N) is r/Vf/(id2/4), where j7 is the orientation efficiency factor equal to
unity for aligned fibres, 2/x- for 2-D randomness and 1/2 for 3-D randomness;
Vf is the fibre volume fraction. Thus, the average closure stress-displacement
relationship is as expected linear, i.e.

a = [1VfT"L/d][I - 26/L]. (1
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However, if it is considered that when the fracture surfaces are separated by an
amount b, then a proportion 26/L of the embedded fibres have already pulled
out completely. Hence the average stress on the composite is

o = [j7VfL/d][1 - 26/L]2 (2)

indicating that the o-6 relation is parabolic rather than linear. Indeed
Ballarine et al [5] have shown that equation (2) is valid for steel fibre reinforced
concrete. It may be criticized that neither equations (1) and (2) considers the
Poisson's contraction of the fibres and the non-constant shear stress at the
fibre-matrix interface. Gao and co-workers [6] have developed o-6
relationship that incorporates these additional factors from a simple shear lag
model.

For many fibre cement composites the complex failure mechanisms in
the FBZ make it difficult to derive a rigorous theoretical 0-6 relationship. In
these cases experimental methods remain the only solution and both direct and
indirect techniques have been developed to measure the o-6 relationship. In
the direct tensile test method a very stiff testing machine or special stiffening
devices are required to produce a stable fracture and misalignment has to be
eliminated in order to obtain an accurate o-6 curve [7,8]. Figure 9 shows a
schematic tensile stress-displacement curve for a fibre cement composite. In
region I the specimen is essentially elastic. In reion II the non-linear
deformation is largely due to dispersed cracking within the gauge section.
When the cracking becomes localised on a future fracture plane the ultimate
strength a. is achieved. Up till am the deformation is uniform throughout the
specimen; but in regions III and IV the deformation is localised in the fracture
process and fibre bridging zones. During region III the matrix FPZ develops
and when the displacement across it reaches 6. a continuous matrix crack is
established. (see Figure 1). Usually 6. << b so that the stress of is close to
the maximum pullout stress. The difference between of and a. depends upon
Vf and F.. In region IV the fibres gradually pullout and fracture. Complete
fibre pull-out occurs when the crack face separation distance & equals to half
the fibre length. The a-6 relation is therefore that given in regions III and IV
as shown in Figure 9. The total specific work of fracture J in a tension test is
given by the sum of the matrix fracture work JIc and the fibre pull-out work,
i.e.

JM = Jlc + I7VfrL 2/6d (3)

if 6, << L/2. In a sufficiently large notched specimen where the FBZ can be
fully established and the crack profile remains unchanged during stable crack
growth J can be obtained and may be identified with the plateau value K of
the crack-resistance curve, i.e. J E - K2. The crack resistance JR prior to J
is therefore

JR(= j a(6)d6 = JIc + | a(b)d6 (4)
.
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Equation (4) has provided a theoretical basis for a simple indirect method to
evaluate the a-6 relationship if the crack-resistance curve JR(O can be

obtained. Using the energetic definition of J it is possible to determine JR

experimentally usiug specimens of different crack lengths. However, JR is now

evaluated at the load-point or crack mouth opening displacement A but not at
the leading edge of the FBZ which is . For any given specimen geometry A
and 6 can be experimentally related to each other so that

JR(A) dA(5)

Li and his co-workers [9,10] have successfully shown the use of equation (5) to
determine the o(6) functional relationship for concrete and fibre cement
composites. Figure 10 shows the o-6 curves for a range of fibre cementitious
materials obtained by Li and Ward [10]. It is interesting to observe that a- is
not linear but parabolic as predicted by equation (2). Since crack-resistance
curves are usually represented in terms of crack growth Aa and not A or
another version of equation (5) has been derived using the KR(Aa) curves. For
the notched crack shown in Figure 11 where Aa is the fibre bridging zone and
the initial crack length ao is much larger than Aa, then

f Aa
K K + [1] f o'(x)dx(6

KR(Aa) =KIc+ [21 J (6)

and it follows that

a(Aa) = (Aa)f dKR( Aa)

in which dKR/d(Aa) is easily obtained from the KR(Aa) crack-resistance

curve. To convert to a(b) it is necessary to determine the relationship between
Aa and 6 either theoretically or experimentally. If it is assumed that the crack
profile is an approximate straight line [11] so that

Aa/l = 2Aas/L (8)

where L/2 is the critical fibre pull--out length at the leading edge of the fully
developed FBZ of size Aas, then

a(b) = (7rAa 66/L) dKR(Aa)/d(Aa). (9)

Since the direct tension test method is difficult to use, Chuang and Mai [12]
have recently shown that for cementitious matrices the a-6 relationship can be
extracted from the load-displacement or moment-curvature curves of an
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unnotched beam in pure bending, provided it is possible to identify the points
on these curves for the onset of the FPZ and the initiation of crack growth at
the tensile surface. However, this method cannot be readily applied to fibre-
reinforced cement composites.

3.2 UNIQUENESS OF C.ACK-.ESISTANCE (I) CULVE

It is of fundamental interest to ask if the crack resistance (R) curve is a unique
material property for fibre cements and other cementitious matrices. If it were
to be so then the characterisation of failure would be a simple matter of
determining the tangency point on the R-curve due to the applied stress
intensity factor Ka--curve (see Section 3.6). The evaluation of the instability
point for non-unique R-curves however requires an iterative process. In terms
of the crack face separation at the leading edge of the fibre bridging zone
equation (4) describes the JR76 relationship as the crack resistance increases
from a matrix toughness JIc to a plateau value J defined by equation (3).
Thus, in between these two limits, i.e. for b << L/2 and 6 > 4,

RM= Jc+ 6d - - 1a

or combining with equation (3) this becomes

= + P- ) I - 1 - U_ (10b)

It is quite obvious from equation (10) that when plotted in terms of b the crack
resistance curve JR is a unique material property. However, since the
relationship between 6 and crack growth Aa (or extension of the FBZ) is both
specimen geometry and size-dependent, JR in terms of Aa is generally not
invariant with these extrinsic variables. During the evolution of the crack
resistance curve expressed in terms of Aa,

a

JR(Aa) = JTc + J o(x) xa dx.(11)

Except for a very large specimen the shape of the crack profile changes with
crack growth so that 86/x # - 86/Ba and JR(Aa) is not unique. A unique
crack resistance curve can be obtained in theory if we consider a semi-infinite
crack in an infinite sheet and this has indeed been studied by Foote et al [13]
using Muskhelishville's method. In this way not only does the crack face profile
remain unchanged but that the FBZ is very small compared to the crack length.
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3.3 ANALYTICAL MODELLING OF CRACK-LESISTANCE CURVE

Many analytical models for crack growth in fibre cements follow the fictitious
crack model of Hillerborg and co-workers [14,15] originally developed for
cementitious matrices, e.g. Wecharatana and Shah [161, Ballarine et al [5),
Visalvanich and Naaman [17] etc. Because the closure stresses in the FBZ and
FPZ are dependent on the crack face separation the problem is a non-linear one
and requires an iterative numerical solution [15,16]. To provide a simpler and
more general model Jenq and Shah have extnded their two-parameter fracture
model for concrete [18] to fibre cements [19]. The two parameters are the
critical value of b. already defined in Figure 1 and the critical stress intensity

factor K! at the tip of the effective or fictitious crack. It is claimed that theseIc

parameters are independent of both specimen size and geometry and can be
used to predict the crack resistance curve of fibre cementitious composites 120].
A review of these previous fracture models is given by Cotterell and Mai 121 .

It appears that the simplest method of analysing crack growth in fibre
cements is by superposition of the stress intensity factors due to the applied
stresses Ka and the closure stresses in the FBZ, Kr, and the FPZ, K.. Lenain
and Bunsell [22] were the first to use the K-superposition method to model
crack resistance in asbestos cements. They assumed that crack growth would
commence when the effective Ke at the crack tip was equal to the matrix
toughness Kic. Instead of calculating K. they assumed Kr to prevail over an

effective crack length which included a portion of the matrix fracture process
zone. Thus, the equilibrium crack growth criterion becomes:

Ke = Ka + Kr =Kic. (12)

The crack resistance is the term Ka which increases as the crack extends and it
is usually described by KR , i.e.

K R(Aa) = Kic - Kr(Aa). (13)

Lenain and Bunsell further assumed the bridging stresses to be constant and
avoided solving the non-linear iterative problem. Kr(Aa) can be obtained
easily from the expression

Kr = -J G(a,x)o(x)dx (14)

where the negative sign is to show that Kr is acting in an opposite sense to the
applied Ka and the Green function G(a,x) is dependent on specimen geometry
and loading configuration. It is unfortunate that they have used the wrong
Green function in their analysis making their results invalid.

The approximations used by Lenain and Bunsell are not realistic and
unnecessary. Equations (13) and (14) can be used in conjunction with equation
(2) for the o-6 relationship in the FBZ to obtain an exact solution. Of course,
this introduces a non-linear problem, since Kr depends on a which in turn
depends on 6 that is the sum of the displacements due to the applied stresses
and the fibre bridging forces. Iterations are required to obtain a that is
consistent with 6 in the FBZ. For a bridged crack in a uniform stress field a,
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the solution of e is relatively simple though iterations are still needed. In a
non-uniform stress field, such as that in a notched bend (NB) or a double-
cantilever-beam (DCB) geometry, the solution of 6 is far more complicated.
Foote et al [11] have derived a simple equation for 6 from stress intensity factors
by application of Castigliano's Theorem. Thus, the displacement Zx) at a
point x from the crack tip (Fig. 12) due to an applied load P acting at a point a
away from the tip is given by i11, 23-25]

a

6(x) =2 Kp(u) [; (u-a+x)] FOdu (15a)

where F is a fictitious force at x, Kp and KF are stress intensity factors due to

P and F. If the positions of P and F have been interchanged along the crack
face b(x) can be obtained from a similar expression

O(x) = 2 - Kp(ux+a) [OKFWU] FOdu. (15b)
x-a F=0

Note that the integration in equation (15) is carried out over the distance
between the forces. If P is a unit force the interals give the displacement
coefficients along the crack face which can be use in the iterative scheme to
evaluate the exact KR-curves. It is important to point out here that equation

(15) is a powerful tool for crack face separation calculations provided the
K-solutions for the applied and fictitious loads P and F are known right to the
crack tip for any given geometry.

Foote et al [11,21,23-261 have also developed an approximate method to
calculate crack resistance curves for fibre cements. In common with Shah and
his co-workers [5,16) the crack faces in the FBZ are assumed to remain straight
so that using equations (2) and (8) it can be shown that:

o~)oas~~fl -] (16)

where the maximum fibre pull out stress o,. = iVf rL/d and n = 2 in this
example but it may assume other values depending on the strin-softening
characteristics of the material. An iterative solution is still required to
determine Aar knowing KlC, E, a, and L while satisfying the equilibrium crack
growth condition of equation (13). For crack growth less than Aas, o(x) is
given by equation (16) and Kr calculated from equation (14). No further
iterations are necessary. Justifications of the linear crack face profile and the
approximate method are shown in Figures 13 and 14 respectively for a wood
fibre cement composite and details of these calculations are given in [11,25].

503



F

P

Figue 1. Eal~tio ofcrack face 
Separation () by 

Castilianots

theorem at the 
locationl of thefitt' 

ore()

04

~ 1 0 2 0 3 0 .4 0.5 0 6 0 .1 0 6 0 9 t

0 0 1 N O R MiA LISED DSTA N CE TO C R~ A CK T P % f1

Figure 13. 
Shape of deformed 

crack faces 
for semi~iffinite 

alld

NB specimens.



3.4 INFLUENCE OF SPECIMEN GEOMETIY AND SIZE ON CLACK RESISTANCE CUIVE

It is discussed in Section 3.2 that the crack resistance curve is unlikely to be a
unique material property because the FBZ is not small compared to the cracked
or uncracked ligament lengths and the crack face profile is not invariant with
crack growth. Consequently, specimen size and geometry must have some
effects on the R-curve. Foote et al [11,25,27] have studied the size effect of the
DCB and NB geometries for asbestos and wood fibre cement composites.

For ease of comparison non-dimensional crack resistance curves, where

KR = KR/K. and Ai = Aa/(K./V.)2, are plotted for the DCB geometry in

Figure 15 and NB geometry in Figures 16 and 17. In these KR-curves a non-

dimsnsional fracture toughness of the matrix Ric = 0.3 is assumed which is

typical of wood fibre reinforced mortars. K-solutions for the DCB and NB
geometries are taken from Foote and Buchwald [28] and Tada et al [29] for use
with equation (15) to calculate the crack face separation 6 in the FBZ. In the
DCB geometry, by keeping ao/H = 3 constant, the crack resistance curves are
dependent on the depth of the beam I(= H/(KW/u,)2) with the length of the

fully developed FBZ Ais decreases as IT decreases but the plateau values KR

are very close to the theoretical limit K0, Figure 15. The effect of the notch to
depth ratio ao/H on the crack resistance curve is practically zero, Figure 18.
Some very interesting observations can be made for the NB geometry. Keepin
the notch to beam depth ao/B ratio of 0.30 constant it is shown that the size of
the beam has a significant effect on the crack resistance curves. When the non-

dimensional beam depth R(=B/(K /m)2) is large compared to the FBZ the "R
curve reaches a plateau value and indeed the whole crack resistance curve is
identical to the DCB geometry when T -, . For smaller ]1 the fully developed
FBZ size decreases with specimen size and the crack resistance curve can be
much larger than the plateau value KW, Figure 16. Also, unlike the DCB

geometry, the notch to depth ratio ao/B has a far greater effect on the KR

curves as shown in Fiure 17.
It is worth noting that whenever the crack approaches the back-face the

crack resistance curve rises rather sharply, such as in NB specimens in Figure
17. In this way small compact tension specimens give similar behaviour. There
is no physical reason as to why the fracture resistance should suddenly increase
near the back-face other than it is a consequence of the K-solution as the
uncracked ligament approaches zero. In fact in cementitious matrices alone the
crack resistance curve may decrease as the back-face is reached [30]. This
result may be caused by the reduction in the width of the damage zone (a
parameter which is not considered in a crack growth model preseinted in these
lecture notes) and the prior damage of the material near the bakc-face due to
precompression [31].
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Experinental crack resistance curves obtained for an asbestos/cellulose
fibre cement mortar [271 for the NB geometry of varying depth and different
initial notch length are shown in Figures 19 and 20. The crack growth was in
the strong direction of the composite. Table 3 gives the composite and fibre
properties. The bond strengths (r) were not measured directly but selected to
give good agreement with the experimental fracture strengths which were
dependent on direction of the sheet. The crack resistance values Klc(- 1.9

MPa&-) and KW (= 5 MP41-') were chosen empirically to give the best fit to
the KR curve for the largest NB specimen with B = 200 mm. These parameters
were then used to calculate the theoretical crack resistance curves for the
smaller NB specimens in Figure 19 and varying initial notch length in Figure 20
using the approximate method outlined in Section 3.3. The agreement with
experimental data is very good. An experimental KR curve for a similar
asbestos/cellulose cement mortar for the DCB geometry is given in Figure 14 in
which theoretical KR curves using both the exact iterative and aprroximate
methods are superposed. Crack growth here was in the weak direction. The
agreement with experimental data is again excellent.

In concluding this section it is important to point out that there are two
levels of modelling. The fundamental level is to start from the closure stress (o)-
crack face separation () relationship and use it to determine Kr(Aa) as may be
affected by size and geometry of specimen whilst still satisfying the crack
growth criterion of equation (13). Since an accurate o-b relationship is difficult
to obtain for a real composite material, it is appropriate to model crack
resistance curves on a more practical level. This involves determining the most
appropriate fracture parameters (Kic, Kw, E, a.) or (Kic, a., &, E) that give
the best fit to the KR curve of a given geometry and size of specimen. It is also
assumed, without any loss of accuracy, n = 1.0 in these calculations. With
these parameters the behaviours of other geometries and even full-size
structures can be theoretically predicted.

TABLE 3. Properties of asbestos/cellulose fibre cement mortars

(a) Composite DroDrties

Young's modulus (E) 6 GPa
Matrix toughness (Kic) 1.9 M Paf

Maximum toughness (K.) 5.0 MPa '
Fracture strengths (a.)

strong direction 10 MPa
weak direction 5 MPa

(b) Fibre Rrooerties
Cellulose Asbestos

Aspect ratio (L/d) 135 80
Fibre length (L) 3.5 mm 2 mm
Volume fraction (Vf) 0.07 0.08
Bend strength (r) 0.88 MPa 2.0 MPa
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3.5 EFFECT OF MATRIX FRACTURE PROCESS ZONE ON CLACK RESISTANCE CURVE

In fibre cements the matrix fracture process zone is not small, (see Table 1 and
Figure 8), it is hence necessary to consider what effect the FPZ will have on the
crack resistance curve. To model this case equations (12) and (13) are not valid
for crack growth. Instead the FPZ is considered as a fictitious extension of the
continuous matrix crack and it carries a constant stress equal to a. For
equilibrium crack growth the crack opening displacement at the tip of the
continuous matrix crack must be equal to the critical value a.. In addition
since there is a finite stress at the fictitious extension of the continuous crack
the sum of the stress intensity factors at the tip of the fictitious extension must
be equal to zero, i.e.

Ke = Ka + Kr + K,. 0 (17)

Now Ka is not identical to the crack growth resistance KT, which is calculated
at the continuous matrix crack tip but not the fictitious crack. A linearised o-b
relationship and straight crack face profiles are assumed to hold in the FBZ in
modelling crack growth. The method of solution is the same as that given in
Section 3.3 except now both Aas and Aa, (the matrix FPZ size) have to be
determined by iteration. For Aa less than Aar it is still required to determine
the current length of the FPZ Aa. by iteration so that the crack face separation
at the continuous matrix crack tip is b.. Crack resistances KR evaluated at the
continuous crack tip can now be obtained and plotted against crack extension
Aa. These predicted KR curves are also superposed in Figure 19 and, quite
clearly, there is very little difference when they are compared to those KR
curves obtained from the earlier model without the inclusion of the matrix FPZ.
in practice the scatter that would be obtained from experimental crack
resistance curves is far greater than the difference between the two models. For
simplicity therefore it is sufficient to model crack growth in fibre cement
composites without considering the matrix FPZ.

3.6 FAILURE CHARACTERISATION OF FIBRE-CEMENTS WITH It-CURVE
CHARACTERISTICS

In an earlier review 132] the author has discussed the usefulness of the crack
resistance curves in the context of determining the maximum load that can be
withstood by a structural component containing a well-defined crack.
Certainly, the component may contain many micro-cracks then the application
of the crack resistance curve instability analysis is somewhat complex and this
is discussed in Section 4.1. The following discussion is limited to the single
crack situation.

Mai and Cotterell [33] assumed that if the crack resistance curve were
independent of specimen geometry and size it could be approximately
represented by a power law function:

K R = i(Aa)a = #(a - ao)& (18)
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in which a and # are constants and ao is the initial crack length. The criteria
for crack instability (at maximum load) under load-controlled conditions are:

Ka = KR = Kc (18a)

a Z dK (18b)

and in general Ka can be expressed as:

Ka = PY(a) (19)

where P is the applied load and Y(a) is the geometry correction factor for a
given specimen geometry and loading configuration [29]. Thus, combining
equations (18) and (19) the maximum load Kc value can be obtained.

Kc = (a4)a (20)

in which t = Y(a)/Y'(a) is a geometry parameter evaluated at the crack length
ac corresponding to the maximum load P.. Experimentally, it has been
established that there exists a linear relationship between ao and ac for a range
of specimen geometries and sizes [33], i.e.

ac = ao + Aac = ?ao (21)

so that 4)(ac) can be determined easily knowing ao. Using NB specimens of
different sizes on an asbestos/cellulose fibre cement composite Mai and
Cotterell [33] have confirmed the validity of equation (20). However, the
compact tension geometry data do not fall within the scatter bend of the NB
data, Figure 21. This means that a and # are geometry dependent and have to
be evaluated separately for different geometries.

There are some fundamental problems with the above approach to obtain
solutions for fracture loads. A major difficulty lies with the assumption of a
f eometry- and size-independent crack resistance curve as defined by equation

18). But as shown in Section 3.4 crack resistance curves generally vary with
size and geometry. It appears that equation (18) may be approximately valid
for a given geometry up to the maximum load and it is correct if small cracks in
infinite plates are considered. The latter may be proven as follows. In general
the geometry parameter O(ac) can be written as the product of ac and 0(ac)
which is a constant evaluated at ac. Thus, using equation (18), (20) and (21), it
can be shown that

a = (O-1)/70  (22)

so that the crack resistance curve becomes

KR = #(Aa) ( - '1 )/# 0 - t(a-ao)(? - 1)/7. (23)

511



E

a0..
4 10

&~ 005"
I ~ ~ al+x0O

U
zt

4

In 0 0 0 0
W 02•B SYMBOL B -200 mm

0o:0.1 o

U 0- o
U 0.5 a

SII,,I I I I

0 20 40 60 80 100 120 140 160 180

CRACK EXTENSION, a. (mm)

Figure 20. Experimental crack resistance curves for asbestos/

cellulose cement mortar specimens with B - 200 mm. Theoretical

model without FPZ and same parameters as in Figure 19.

1.? - 1-20 -J1O%

1.0 /
/ /

/

0.8 / /

L4 /

" 0.66 /

/o0 LEAST SGUARE

0./
/0

1 0/1 1 1 1 -S /2 / 3 16 5 6 7

LN I J (ram)
-0.j L-N 

f

Figure 21. Variation of Zn Kc versus in 0 for NB and CT asbestos/

cellulose fibre cements according to equation (20).



0(ac) is not only geometry--dependent, but for a given geometry, it also varies
with ac. This suggests that the crack resistance curve is crack
length-dependent. In this way the solution for Kc is not self-consistent.
However, for small cracks in large sheets, 0 is invariant with ac and equals to 2,
i.e.

KR  #&(Aa)(r-1)/27 (24)

which is also obtained by Broek [34] and is now a unique material curve.
A similar approach has been used by Mobasher et al [20] for fracture

load predictions in cement-based fibre composites. They also Used an energy-
based R--curve similar to the power-law equation (18) (in which KR is replaced

by R) and assumed equation (21) to apply. The constants 0 and 7 (and hence
a) are obtained by solving a set of non-linear integral equations satisfying the
following conditions for fracture instability:

KIc K(ac) + Ka(ac) (25)

and

'5n= 5r + ba. (26)

The two fracture parameters K6 and 6. are to be evaluated from the fracturek$

properties of the unreinforced matrix. It seems that by using Ki instead of Kic
in equation (25) the effect of the matrix FPZ is included. But as shown in
Section 3.5 this does not really cause any difference in the predicted crack
resistance curve. In addition the same comments made above with regard to
the Mai and Cotterell approach [33] using a power law R-curve apply. It is

also not obvious that Kic is geometry and size independent because the length

of the matrix FPZ does depend on these variables [24.
In view of the absence of a unique materl resistance curve a more

rigorous and general approach is to start from the instability equation (18a) and
compute the crack resistance curve as Aa is increased in accordance with the
procedures outlined in Section 3.3 for any given specimen geometry and size and
initial critical crack length. Fracture instability is reached if equation (18b) is
satisfied. This solution gives the fracture load and the critical crack length.
A numerical iterative scheme is required to solve this problem but it is not
difficult. A demonstration of this technique has been given by Cotterell and
Mai [35] for cement paste in NB specimens.
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4. Studies on Tensile Strength of Short Fibre Cement Composites

Practical cement-based short fibre composites contain many inherent defects
which are brid~ed by fibres so that each individual crack essentially exhibits a
R-curve behaviour. The size of these defects is not constant and in the absence
of the fibres the Weibull weakest link theory applies, i.e. the tensile strength is
predominantly controlled by the largest defect. When fibres are bridging these
defects and because the fibres are not uniformly distributed some cracks will
have more fibres and others fewer. The tensile strength cannot be determined
by the simple weakest link theory and the crack-resistance curve characteristics
for each crack has to be considered in any fracture model. Because the fibres
exert closure stresses on the crack face a higher applied stress is needed to cause
tensile failure of the matrix so that its strength can be increased. Hence, as
shown by Andonian et al [36], low modulus fibres like polypropylene and
cellulose can indeed reinforce cement mortar with a higher modulus (see Figure
22) because there are many crack-like defects from which fracture initiates.
Both the first cracking and final tensile strengths are therefore increased due to
the bridging effect of the fibres. In addition, if the matrix material exhibits a
time-dependent strength degradation the same will apply to the strength of the
fibre cements. These problems and others have been studied both theoretically
and with computer simulations by Hu et al [37,38] and Hu [39]. In the following
subsections only the essential features of the analytical and computer simulation
studies are presented.

4.1 TENSILE STRENGTH OF SHORT FIBRE CEMENT COMPOSITES

Consider a rectangular plate specimen under uniform tension in which the fibre
density pf and the fibres of constant aspect ratio (L/d) are randomly distributed
throughout the plate but are aligned in the direction of the applied stress. The
size of the matrix cracks, which are considered as equivalent Griffith cracks
lying normal to the applied stress, varies according to the Pareto distribution:

q(a) = (pm m/2ao)(ao/ m,2)/2 (27)

for a > ao and Pm is the density of matrix cracks, m is the Weibull modulus of
matrix material and a. is the reference crack size. This choice of q(a) gives the
usual Weibull strength distribution equation because

00

F() = 1 -exP-VJ q(a)da}

= 1 - exp{- Vp I-od]} (28)

where V is volume of material under tensile stress, co = K 1Cj 2 7ii and Kic is

the matrix toughness. Crack growth in each individual crack occurs if equation
(12) is satisfied, i.e. Ke = Ka + Kr = KIc. The R-curve effect of the matrix
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material is not considered in this crack &rowth criterion so that it is only
necessary to evaluate Kr due to fibres bridging the individual cracks. Failure of
the composite is complete when the cracks coalesce and spread across the plate
width.

If the fibre density pf is high, the number of fibres bridging a crack is
proportional to its length and the effective bridging stress (in this 2-D model)

a"fb = rrdp fL2/4d (29)

is the same in each crack being determined by the shortest of the two embedded
lengths. Equation (28) then gives the strength distribution of these fibre
cement composites if or is replaced by the effective stress oe(= '-a b), i.e.

m

F(or) = 1 -expI-VPm o I . (30)

In this way the Weibull weakest link theory applies because there is little
variation of the bridging stress across the matrix cracks. However, when the
fibre density is moderate the number of fibres in defects of a given length is not
constant and the bridging stress changes. Unlike the high pf case there will be

considerable stable crack growth (Aa) prior to fracture instability due to the
stabilization effect of the bridging fibres. Hu et al [38] derived the following
failure probability equations:

-- 1 - exp{- V )Q(a,A )da

for Aa equals Aac which is the statistically averaged maximum stable crack
growth, and

0 0a ( p 1 -a rF(a) exp l -  V q(a) (pLa)S fLa)da
a(a) s=0 e

(31)

for first cracking. Q is defined by

p ( La)
Q(aAa) = q(a) E .--- exp(-pLa) x

As
-s (p LAa)

5As ep(-pfLAa). (32)
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is the maximum number of fibres with which a crack of size a can propagate
under a stress a. S is the equivalent of i when a becomes (a+Aa). It should be
noted that when pf becomes zero the'Weibull equation (28) is recovered.

To illustrate the application of equations (30) and (31) the properties of
a typical steel wire reinforced mortar as shown in Table 4 are used. Equation
(31) shows that for pf = 0 a constant strength of a(F=0.5) invariant with Aa is
obtained. This is consistent with the weakest link theory. For pf = 0.1 and

-2
0.2 mm equation (30) is used to calculate ¢(F=0.5) as Aa is increased to Aac.-2
These strength results are tabulated in Table 5. For pf = 0.1 mm the tensile

-2

strength is about 9.6 MPa after Aac s 10 mm; and for pf = 0.2 mm this
becomes about 13.22 MPa after Aac m 40 mm. These strength values should be
compared with the matrix strength of 6.71 MPa. Even the first cracking
strengths of the fibre-reinforced mortars are larger than the matrix strength.
The amount of stable fracture prior to reaching Aac is enormous particularly for

-2
pf 0.2 mi-2

TABLE 4. Properties of a fibre reinforced cement mortar composite

(a) Matrix Droegrties

Fracture toughness Kic = 0.6 MPa;fi-i
Reference crack size ao = 2 mm
Weibull modulus m = 8

"2

Density of cracks p = 0.003 mm

Volume of specimen V = LxW = OOx 100 mm 2

(b) Fibre T)roperties

Fibre diameter d = 0.1 mm
Fibre length L = 5 mm
Bond strength r = 4 MPa
Fibre density pf'= 0.1, 0.22 mm 2
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TABLE 5. Tensile strength of short fibre cement mortar composite

Fibre density Crack growth Tensile strength
pf(mm- 2) Aa (mm) (F=0.5) o(MPa)

0.00 - 6.71
0.10 0 8.51

1 8.86
2 9.14
5 9.52
10 9.60
20 9.58

0.20 0 9.67
1 10.42
10 12.29
20 12.74
30 13.09
40 13.22

In parallel with the theoretical calculations above computer simulation
experiments have also been carried out for these fibre composites. Defects in
accordance with the Pareto distribution, equation (27), and distribution of
fibres are randomly generated. Incremental stresses are applied and the
effective stress intensity factor Ke (due to the applied stress and the fibre
closure forces) calculated for each crack. When Ke = KIc of the mortar matrix

crack growth is permitted from fibre to fibre until arrest. This procedure is
repeated until complete failure of the specimen. Appropriate stress intensity
factors for discrete forces acting on the crack face can be obtained from Tada et
al [29]. To avoid stress singularity in K due to a point force acting at a crack
tip the closure forces are assumed to act halfway along the shorter half of the
bridging fibre and in a symmetrical position on the other side of the crack face.
Figures 23 to 25 show the strength distributions for the matrix material and the
two fibre cement mortars. Both the first cracking and final failure strengths are
shown. Several comments may be made about these results. In Figure 23 the
Weibull failure strength distribution obtained from computer simulations is
given by:

& Ini..-]= 8.74 &no- 16.7 (33)

which may be compared to that calculated from Weibull's equation (27) using
the properties shown in Table 4, which is:

&1In [T ] =8&o-15.56. (34)
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The agreement is hence excellent. In Figures 24 and 25 there are considerable
increases in the Weibull moduli for the first cracking and final failure strengths,
e.g. m = 8.74 and 16.7 for pf = 0.1 ram- 2; and m = 12.6 and 14.8 for Pf =
0.2 rM' 2. Physically, this means that there is much less scatter in strength
when the mortar matrix is reinforced with short fibres and this must be caused
by the R-curve mechanism in the composite materials. Also, the tensile
strengths as expected are increased several times that of the unreinforced
mortar matrix.

4.2 TIME-DEPENDENT TENSILE STIENGTH OF SHORT FIBRE CEMENT COMPOSITES

Many cementitious matrices suffer slow crack growth due to the effects of a
hostile environment such as water or moisture .40-421. This phenomenon is
usually manifested in terms of strength degradations in constant stressing rate
and cyclic loading tests as well as the time under which a sustained stress is
applied. The simplest equation to describe slow crack growth in brittle
materials is [431:

da/dt = AKa (35)

where A and p are constants and Ka is the applied stress intensity factor at the
crack tip. Hu et al [44,45] have studied the time-dependent strength behaviour
of cementitious matrices by combining their statistical theory of fracture with
equation (35) for constant sustained stresses, constant stressing rates and cyclic
stresses. In short fibre composites the fibre bridging stresses afb must be
included in the analysis and are assumed to smear over the crack face. Hence in
terms of the effective stress intensity factor Ke equation (35) is recast as:

da(t)/dt = AKP = A{(a-fb)0t% j}p  (36)

where a(t) is the crack size at time t and is used to distinguish from the initial
value a at t = 0. The fibre closure stress O'fb at time t is

O'fb(t) = {s(o) + pfL[a(t)-a]}( rLdr)/4a(t)d (37)

where s(o) is the initial number of bridging fibres. Thus, the time At required
to extend a distance Aa may be obtained from equation (36), i.e.

a+Aa
At = J {A[(U-fb(t)) Mat'}'Pda(t) . (38)

1a

Hence, for any given initial values of s and a, At can be obtained for a given Aa
or vice versa.

Computer simulation tensile experiments similar to those described in
Section 4.1 for tensile strength can be conducted in accordance with equations
(37) and (38). The properties of the fibre cement composite are the same as
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those given in Table 4 except the following changes: r = 2 MPa, Kic = 0.34

MPt~fl, p = 36, AKPc = 0.1359 m/s. These variations are required because of

a new matrix material is now selected 140]. Initially a time interval At is
prescribed and the crack growth Aa is calculated according to equation (36) for
all cracks. If no unstable crack propagation occurs and the specimen can still
sustain the applied stress, another time interval is assigned and the crack
growth calculated again. This procedure is repeated until a crack runs through
the specimen. The lifetime to failure tf at the given stress is the sum of the
total time intervals.

Simulations are performed for the matrix material and the fibre
composite with pf = 0.1 and 0.2 mm'2 . These results are shown in Figure 26 for
a 50% failure probability and for a given pf the data can be described by the

equation: o ptf = constant [47]. The slope of the log o-log tf plot gives a
measure of the effective slow crack growth exponent p* of equation (35). Thus,
when pf =0, p* = 33 which compares well with the input value of p = 36.
When pf = 0.1 and 0.2 mM- 2, p* becomes 125 and 200 respectively. The

observed changes in the effective slow crack growth exponent due to the
R-curve effect are not uncommon and have also been reported for ceramics with
residual stress effects [46,47].

Theoretical evaluation of the time-dependent strength may be obtained
from an equation similar to (30), i.e.

F(o,Aac,tf) = 1 - exp{- V Q(aAac,tf)da}. (39)

a ( o,tf)

Q(a,Aac,tf) is more difficult to calculate and is given in [39]. Since no
additional physical insight is to be gained from equation (39) the theoretical
predictions of a-tf-F diagrams are not given here.

5. Concluding Remarks

The fracture behaviour of fibre cementitious composites has been studied using
the crack growth assistance curve concept. It is shown that the. KR-curve is
not a material property but depends both on specimen geometry and size. In
small NB beams the crack resistance does not tend to the limiting plateau value
K. as in large DCB specimens. A simple K-superposition method is proposed
to model the crack resistance curve. This assumes that crack rowth occurs
when the effective stress intensity factors K. at the tip of the continuous matrix
crack is equal to the matrix toughness KIc. Since Ke is the sum of the applied

and closure stress intensity factors, Ka and Kr, the modelling reduces to
determining Kr due to the fibres bridging across the crack faces. With the
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assumptions of a linearised closure stress ()-crack face separation (b)

relationship for the fibre bridges and straight crack flanks in the FBZ the crack
resistance curve can be obtained by simple iteration routines. The effect of the
exponent n in the stress-displacement equation (16) on the K R curve is

negligible [21]. What matters most are the fracture parameters Kic, a. and K O
(or J.). As shown in Section 3.4 these parameters can be determined by
choosing such values that give the best fit to an experiment crack resistance
curve for a given geometry and size. They can be used then to evaluate
R-curves for other geometries and sizes.

Failure characterisation of fibre cement composites containing a single
dominant crack with a R-curve characteristics may be effected by considering
the interaction of the crack resistance curve and -the applied stress intensity
factor curve and determining the tangency point to evaluate the critical load
and critical crack growth. Since the crack resistance curve is not unique
iterations are required to solve this problem. Both theoretical and computer



simulation studies on the tensile strength behaviour of short fibre cement
composites containing many cracks show that as a consequence of the R-curve
characteristics of each individual crack the tensile strength is increased even
though low modulus fibres such as cellulose and polyethylene are used. Also,
the Weibull modulus of the fibre composite is considerabl increased compared
to the unreinforced matrix. The time-dependent strength behaviours of short
fibre cement composites when subjected to constant applied stresses are also
investigated and they show that the effective stress corrosion exponent of the
slow crack growth law is increased due to the R-curve effect of the bridging
fibres.

A final remark is that whilst these lecture notes deal exclusively with the
crack resistance curve - its theoretical modelling and its applications in failure
characterisation of cement-based fibre composites - such a concept may not be
readily comprehensible to the civil or structural engineers. For practical
purposes, once the parameters KIc, KO and a. are determined, it is desirable to
calculate the load to extend a crack and hence to obtain a complete load-
deflection curve or a moment-curvature diagram that are of more immediate
use. Future work should be directed towards a sensitivity study of these
fracture parameters on the shape of the load-deflection curves. Fracture
mechanics models can also be extended to investigate the time-dependent
strength behaviours of fibre cements particularly for cyclic loading situations.
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PRELIMINARY VERSION.

kBSTRACT A proper characterization of the fiber/matrix bond in fiber reinforced
cementitious - FRC - composites is of great importance not only in the evaluation of
the quality of a given fiber/matrix system. Different kinds of fiber/matrix debonding
mechanisms are included in many models for the macroscopic mechanical behavior of
FRC-materials and the applicability of such models naturally depends on the avail-
ability of experimentally determined fiber/matrix bond parameters. The present
paper consist of a unified treatment of the fiber/matrix bond models proposed in
the literature along with an evaluation of these models from a experimental and the-
oretical point of view. When dealing with perfectly bonded interfaces, basically two
approaches are identified: the stress criterion and the fracture mechanical criterion
approach. The results of these two approaches are examined and discussed. Finally
some new research directions are proposed.
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1 Introduction

Fiber Reinforced Cementitious - FRC - materials are a special type of the so-called
fiber reinforced brittle matriz composites which again are a special type of brittle
matriz composites. The latter group of materials consist of composites characterized
by the fact that the matrix is very brittle compared to the other phases in the
composite material.

Brittle matrix composite materials are designed in order to retain some of the
matrix characteristics, typically the stiffness and the mechanical behavior in com-
pression while other characteristics - typically the brittle behavior of the matrix
material in tension - are modified.

Fiber reinforced brittle matrix composite materials are the most common of the
brittle matrix composite materials. The fiber reinforcement modifies the brittle
behavior of the matrix material by stabilizing cracks and microcracks. The crack
stabilization takes place both on the so-called meso-level, i.e. the level where the
characteristic length is in the order of big pores, cement grains, preexisting cracks,
and inclusions as well as on the macro-level, i.e. the level where the characteristic
length is that of the structure and where the cementitious material is treated as a
homogeneous continuum.

Looking specifically at cementitious fiber reinforced materials a number of differ-
ent mechanisms for crack stabilization on the meso- and the macro-level have been
identified in the literature including:

o Crack blunting (meso-level), originating in the Cook-Gordon arrest mecha-
nism, (Cook and Gordon, 1964)

o Crack path deviation (meso-level), presumably connected to the Cook-Gordon
arrest mechanism, see e.g. Bentur et al. (1985a).

o Crack bridging (meso- and macro-level).Fibers crossing the crack introduce
crack closing forces on the entire crack surface (meso-level) or part of the
crack surface near the crack tip (macro-level). This effect is probably the most
widely recognized crack stabilizing effect identified and modelled by numerous
investigators, see e.g. Hiilerborg (1980), Korczynskyj et al. (1981), Hannant et
al. (1983), Selvadurai (1983), Mori and Mura (1984), Budiansky et al. (1986),
Stang (1987), and Budiansky and Amazigo (1989).

o Crack shielding (macro-level), related to the increased formation of cracks
on the meso-level. Crack shielding has been dealt with especially in ceramic
systems, e.g. Evans (1984), and Hutchinson (1987) but is probably also a
significant mechanism in cementitious systems.

In almost all fiber/cementitious matrix systems the bond between the fiber and
the matrix is relatively week. It follows as a consequence that all the mechanisms
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mentioned above include fiber/matrix debonding to a certain extend. As a further
consequence, the magnitude of the fiber/matrix bond - along with the mechanical
characteristics of the fibers and the matrix material - has a significant influence on
the macroscopical mechanical behavior of the composite material.

Numerus models have been introduced in the literatur dealing with the macro-
scopical behavior of cementitious fiber reinforced composite materials or brittle
matrix composites in general as function of the interfacial fiber/matrix behavior,
see e.g. Aveston et al. (1971), Hillerborg (1980), Korczynskyj et al. (1981), Han-
nant et al. (1983), Budiansky et al. (1986), Stang (1987), and Budiansky and
Amazigo (1989), and Abudi (1989).

All these models include - implicitly or explicitly - a quantitative characteriza-
tion of the fiber/matrix bond. The applicability of such models is of course limited
if the fiber/matrix bond parameters cannot be determined independently by exper-
iment.

Following this line of thought, the following requirements must be imposed on
the parameters used to characterize the fiber/matrix bond:

9 The bond parameters should be true "material" parameters in the sense that
the magnitude of the parameters should be independent of the loading condi-
tions and the geometrical configuration of the fiber/matrix system.

9 The concept behind the parameters should be realistic enough to reflect the
significant features of the bond mechanisms and simple enough to allow for ap-
plication in simplified approaches to complicated composite material systems.

* It should be possible to evaluate the bond parameters directly from relatively
simple (pullout) experiments or indirectly from the macroscopical behavior of
simple composite material systems. In both cases the magnitude of the bond
parameters should be determined by comparing the experimental results with
a robust analytical model.

In the following models presented in the literatur will be presented and evalu-
ated with respect to the requirements suggested above. First the different types of
interface characterization will be identified from a general point of view. Secondly
different types of debonding criteria will be examined and their application to the
pullout problem will be investigated.. Thirdly different types of experimental inves-
tigations will be mentioned and finally conclusions will be drawn on the basis of the
findings in the previous sections. Finally some suggestions for future research and
investigations will be given.
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2 Interface characterization

The volume surrounding the surface separating the fiber and the matrix is usually
denoted the interfacial zone.

This zone is often idealized as a surface i.e. as a zone with no extension perpen-
dicular to the fiber. In this zone special requirements are then imposed on stresses
and displacements - requirements which are different from those imposed in the
matrix and fiber volume. These requirement reflects the nature of the interfacial
fiber/matrix bond.

There is experimental evidence that this type of modelling does represent an
idealization. Typically in steel fiber reinforced cementitious composite materials
an interfacial volume or transition zone rathe. than a surface has been described.
See Pinchin and Tabor (1978a), Barnes et at. (1978), Page (1982), Bentur et al.
(1985b), and Wei et al. (1986). It has been shown that each fiber in the transition
zone is surrounded by matrix material which is more porous and less stiff than the
bulk matrix material.

Typically the interfacial zone is divided into two parts. One where the original
bonding - which can be of a physical and/or chemical nature - between the fibers
and the matrix is intact. This part is here denoted as the perfectly bonded part,
and is usually described by a set of mathematical relations describing continuity of
stresses and displacements across the interface.

The other part of the interfacial zone is denoted the debonded interface. This zone
is usually thought of as a zone created by external thermal or mechanical loading. In
the debonded part of the interface a completely new set of mathematical interfacial
relations are set up which reflects the ability of the fiber and the matrix volume to
experience relative displacements.

2.1 The Perfectly bonded interface

From a continuum mechanics point of view - and accepting the surface idealization
of the fiber/matrix interface - the perfectly bonded interface is characterized in the
following way.

Using conventional index notation the stress field in the fiber is denoted f and
the displacement field denoted u! while the stress field and the displacement field
in the matrix is denoted or and u'.

The constitutive relation in the fiber and the matrix relates - along with the
definition of strain - the stress and the displacement fields in each of the two volumes.
However, on the perfectly bonded interface it is required that

f -a mj on I b (1)
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along with

ut =uT on Ib (2)

where I represent all points on the perfectly bonded interfacial surface and ni is
the outward unit normal vector to the fiber surface while mi is the outward unit
normal vector to the matrix surface.

Thus, the perfectly bonded interface is modelled by requiring continuity in the
surface tractions and the surface displacements on the interface.

Many analytical models are two dimensional and the analysis may not involve
the complete displacement and stress tensor field, however, all models dealing with
the perfectly bonded interface set up requirements which can be interpreted as parts
or special cases of the equations (1) and (2).

2.2 Debonded interface

On the debonded interface the characterization is changed into a prescribed surface
traction boundary condition which is applied to both the fiber surface and the matrix
surface in the following way:

o!nj= f, on Id (3)

and

a!mMj--f on Id (4)

where Id represent all points on the debonded interfacial surface while fi represent
the prescribed surface traction.

This description obviously allows for displacement discontinuities along the de-
bonded interface, however, it does not give any guarantee that surface overlapping
will not occur.

Thus the relations (3) and (4) are only sufficient if:

(u -ut)n, < 0. (5)

The surface traction f1 represents frictional stresses which are usually related to
surface roughness. Often the frictional surface tractions are assumed to be constant,
Lawrence (1972), Laws et al. (1973), Bartos (1981), Laws (1982), Gray (1984),
Gopalaratman and Shah (1987), Palley and Stevans (1989) Stang, Li, and Shah
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(1990), however, if the surface traction is connected to surface roughness it is rea-
sonable to assume some sort of relationship between the surface traction and the
displacement discontinuity across the interface:

f, - f(uj' - f) on Id (6)

see e.g. Wang et al. (1988) who used this type of modelling in a fiber pullout
investigation involving loading and unloading. In spite of the appealing concepts
underlying equation (6), not much work has been done in this direction.

Some models, Budiansky et al. (1986) and Gao (1987), Abudi (1989), and Sigl
and Evans (1989) deal specifically with the case were the matrix exerts a compressive
stress on the debonded interface due to thermal mismatch, mechanical loading, or
matrix shrinkage. In that case the boundary condition on the debonded interface
becomes a complicated mixed type of boundary condition requiring displacement
continuity perpendicular to the interface:

n, 1 =-m,, on I d (7)

along with stress continuity perpendicular to the interface:

ninn = -minpnq on Id  (8)

However, the surface traction in the interface plane is a prescribed frictional surface
traction. This condition can be written as:

a4n - nfnfnqGTY af, on Id  (9)

and

aMP - mimpmqo =-i on Id (10)

assuming a symmetrical stress tensor.
The magnitude of the prescribed frictional surface traction can be assumed to

depended on the normal stresses on the interface according to the Coulomb frictional
law:

Ill = c - nn (11)
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where c is a measure for the cohesion, and 1A is the frictional coefficient. The
direction of the frictional surface traction can be determined from the direction of
the displacement discontinuity rate, as suggested by e.g. Abudi (1989). Thus, the
most general type of relationship for the surface traction can be written as:

f,=f,((u"-4),npno4) on Id (12)

Again, many analytical models are two dimensional and the analysis may not
involve the complete displacement and stress tensor field, however, all models dealing
with the debonded interface set up equations which can be interpreted as parts of
or special cases of the above equations.

2.3 Other interface models

A very attractive interface model was suggested by Needleman (Needleman, 1987)
originally for use in plastically deforming solids and composite materials. However,
it seems obvious to use this kind of interface description in brittle matrix composites
as well.

The basic idea of the Needleman interface model - which places it somewhere be-
tween the perfectly bonded interface and the debonded interface - is that a separate
constitutive relation is postulated relating interface surface traction with displace-
ment discontinuity.

Thus, in this type of model there is no clear distinction between bonded and
deboned interface since a relation of the kind (3), (4), and (6) is governing the
interface at all times:

4nj A on 1 (13)

and

eri rj =-fi on 1 (14)

and

f, = ,(.7 - on 1 (15)

where I means all points on the total interface.
Using a potential formulation the response is specified in terms of three parame-

ters: a maximum tensile surface traction an., corresponding to a positive interface
separation, a maximum positive interface separation 6 and the total work of sepa-
ration, 0.
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The potential is chosen so that all surface traction components reaches a max-
imum for increasing interface separation and then drops to zero when the corre-
sponding interface separation component. exceeds 6. In case of negative interface
separation (interface o-erlapping) compressive interface tractions build up.

This model has been used in a couple of papers for studying void formation at
inclusion boundaries (Nutt and Needleman, 1987) and (Needleman and Nutt, 1989).
Tvergaard (1989) modified the model in order to include Coulomb friction and used
the modified model to study debonding in whisker-reinforced metals.

The model is somewhat similar to the cohesive crack models by Barenblatt
(1962), and Hillerborg et al. (1976).

A Needleman type of model was applied to fiber reinforced cementitious matrix
composites by Nammur and Naaman (1989) assuming a linear elastic perfectly plas-
tic type of relationship between slip and shear stress at the interface. This relation
was assumed to govern shear transfer at the total fiber/matrix interface at all times.

Finally, Leung and Li (1990) mentions the possibility of using cohesive crack
models to describe the transition zone separating the debonded and perfectly bonded
interface in a fiber pullout test.

3 Debonding criteria

Assume that a model for a fiber imbedded in a cementitious matrix has been estab-
lished including an interface model derived from the general interface description
above. If the interface is divided into a perfectly bonded and a debonded interface,
a criterion is needed in order to determine weather a point on the perfectly bonded
interface is about to change status and becoming a point on the debonded interface.

Basically debonding criteria can be divided into two classes: the stress based pre-
dicting onset of debonding when the interface surface traction reaches some critical
value.

In general terms the stress based condition for debonding is

F(4,n) = I on Ib/Id (16)

where Ib/jd means the transition point separating the perfectly bonded and the
debonded interface.

The other approach is the fracture mechanical approach which was applied to the
fiber pulliout problem by Gurney and Hunt (1967), Outwater and Murphy (1967),
Bowling and Groves (1979), Wells and Beaumont (1982), Gray (1984), Piggott et
al. (1985), Wells and Beaumont (1985), Stang and Shah (1986a), Piggott (1987),
Morrison et al. (1988), Gao et al. 1988.
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Basically the fracture mechanical postulate is that given a measure a for the
debonded zone A, the debonded zone will increase in size if and only if

G r OA  (17)

where r is denoted the work of fracture and where

GOW _ OW/ (18)a 8 a; Oa a

Here W is work done by prescribed external forces, W is elastic strain energy,
and W! is dissipation in inelastic parts of the structure, e.g. work done by friction
on the debonded interface.

If the interface characterization is of the Needleman type no extra criterion is
needed in order to determine weather debonding takes place or not.

3.1 The fiber pullout problem

The fiber pullout where a single fiber or a number of fibers are loaded axially and
pulled out of a piece of cementitious matrix material with a given geometry as been
studied extensively in the literature. The aim of this modelling is to provide a model
which can be used to

1. Identify the fiber/matrix bond parameters.

2. Provide a model that can be used for interpretation of a given fiber pullout
experiment in order to determine the bond parameters experimentally.

Modelling of the fiber pullout problem involves modelling of the fiber/matrix inter-
face along with a modelling of the matrix geometry and the fiber geometry.

Here, only models which use a perfectly bonded/debonded kind of interface mod-
elling will be considered.

A number of authors, Greszczuk (1969), Lawrence (1972), Laws et al. (1973),
Bartos (1981), Laws (1982), Gray (1984), Gopalaratman and Shah (1987), Palley
and Stevans (1989) Stang, Li, and Shah (1990) have used a simple shear lag type
of analysis. The advantages of a simple shear lag approach is that simple closed
form analytical expression can be derived and at the same time the model is general
enough to be able to identify some of the basic features of the fiber pullout problem.

A typical shear lag solution of the pullout problem based on the description (1),
(2), (3), and (4) with a constant shear stress at the interface gives the following
load/ displacement relation at the end of the fiber (see Stang Li and Shah, 1990):

Uf = Pf - qta coth(w(L - a)) + P1 - 1qja a (19)
E1 Aw E1 A
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Here, U1 is the displacement of the free fiber end while Pf is the pullout load at
the free fiber end . The frictional force per length q] is acting at the debonded
interface which has a length of a. The stiffness and the cross sectional area of the
fiber is denoted Ej and A respectively. The quantity w is given by

(20)

where k is related to the shear stiffness and the geometry of the matrix material.
The total axial displacement field of the fiber U(z) is given by:

= P - qfa cosh(wz) 0 _ x < (L - a)
U(x) = E1 Aw sinh(w(L - a))

and
(21)

U(x)= P- qfacoth(w(L-a)) - - qL(L-a)
E1 Aw E1 A

qP - qL X  q 2 (L -a)< L
2E a) + -A 2E A

where L is the total fiber length, x = L is the free fiber end, x = 0 is the embedded
fiber end, while x = (L -a) correspond to the perfectly bozded/ debonded interface
transition.

The fiber force as function of the position in the fiber is given by .quations (21)
in combined with the constitutive relation for the fiber:

P = EfAU' (22)

Solutions of the same nature but introducing the shear stress as function of the
normal stress (equation (11)) and furthermore relating the normal stress on the
interface to a geometrical misfit due to e.g. matrix shrinkage have been presented
by Pinchin and Tabor (1978b, 1978c) and by Beaumont and Aleszka (1978).

More detailed models than the shear lag type are models based on linear elastic
analysis of a fiber embedded in an infinite half space, Muki and Sternberg (1970),
Sternberg,-, I Muki (1970), Luk and Keer (1979), Phan- Thien (1980), Phan-Thien
and Goh (1b.L), Phan-Thien et al. (1982). These models take advantage of the
axial symmetry of the pullout problem, thus reducing the 3D problem to 2D. To
some extend analytical expressions for stresses and displacements are derived, but
only the case where the total interface is perfectly bonded is treated.
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Applying finite element or boundary element soiutions to the pullout problem
allows for a more general type of analysis including modelling of the exact geometry
and including more general types of interfacial models. Atkinson et al. (1982), Stang
(1985), and Morrison et al. (1988) presented FEM and BEM solutions based on axial
symmetric linear elastic models and used a perfectly bonded, stres free debonded
interface model. Marmonier et al. (1988) presented an axial symmetrical FEM
model but considered only a perfectly bonded interface. Steif and Hoysan (1986)
considered a two dimensional FEM analysis of the pullout problem and introduced
a interface relation of the kind (13), (14), and (15) governing the interface at all
times.

3.1.1 Stress based criteria for debonding

As mentioned above the perfectly bonded, debonded interface type of models are
not complete until a criterion for continued debonding is established. On the other
hand models which do not include the perfectly bonded interface in the analysis, but
assume some sort of slip/ stress transfer relation governing the interface at all times
(e.g. Nammur and Naaman 1987) do not distinguish between bonded and debonded
and all the bond parameters are already included in the model.

Consider a simple shear lag model for the pullout problem like the Stang Li
and Shah (1990) model and apply a maximum shear stress criterion for continued
debonding:

q = qm z (23)

where q is the shear force per length at the interface. Then the pullout force as
function of the debonded length a is given as

P1 = qfa + qa. tanh(w(L - a)) (24)

The load that initiates debonding Pf is given by eq. (24) for a = 0:

= q tanh(wL) (25)

Apart from a different interpretation of the factor w similar expressions were
obtained by Lawrence (1972), Laws (1982) and Bartos (1980).

The approach outlined above thus identified two parameters: the maximum shear
stress at the perfectly bonded interface, q,, and the frictional shear stress at the
debonded interface, qf. However, it is important to note that if the shear lag
approach was exchanged with a different type of analysis, e.g. a FEM analysis, then
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the magnitude of the maximum shear stresses at the perfectly bonded interface
would change significantly.

This is pointed out by e.g. Atkinson et al. (1982) and Mamonier et al. (1988)
reporting singular stresses at the interface in the complete linear elastic solution.

Thus, applying a maximum shear stress criterion to experimental results the
bond parameter q..,. determined would depend on the type of analysis used in the
analytical modelling.

3.1.2 Fracture mechanical criteria

The problem of dependency of the magnitude of the bond parameters on the analyt-
ical modelling is overcome if a fracture mechanical criterion foi continued debonding
is applied.

Applying e.g. the fracture mechanical criterion (17) and (18) to the shear lag
analysis of Stang, Li and Shah (1990), and identifying the term W as the work
done by the constant frictional stresses at the debonded interface then the solution
for the pullout force as function of the debonded length a reads:

P = qfa + + + 2EfApF tanh(w(L- a)) (26)

or

Pi = qf a + ( +L + 2E1Ap r') tanh(w (L - a)) (27)

depending on the approximations done in order to estimate the work done by the
frictional stresses. The quantity p designates the perimeter of the fiber.

The solution for the load that initiates the debonding process is readily obtained
from the equations (26) and (27):

PO= -+ + Y 2E 1 Aptr tanh(wL) (28)

or

Pfy + (2-~ +) tanh(wL) (29)

A similar solution was derived by Palley and Stevens (1989) for a different ge-
ometrical configuration, however, their solution was not presented on an explicit
analytical form.

It is interesting to compare the solution obtained from the stress criterion with
the two solutions obtained from the fracture mechanical criterion.
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Identifying the latter approach as the "true" approach and the first approach
as the "approximate" approach it is clear that the approximate parameter q.4Z
contains contributions from two real pe-,-a-ndere r, the work of fracture, and qj-
the interfacial friction. Since q.,f includes a fracture mechanical parameter it is
obvious that q., will depend heavily on the approximations done in the modelling
of the approximate stress distribution.

Furthermore, it is observed, that according to the fracture mechanical criterion
approach:

qf -- q,.x (30)

a relation which is not included in the stress criterion approach.

4 Experimental investigations

The most commonly applied experimental setup used for the determination of bond
parameters in FRC systems is the fiber pullout experiment where a single or number
of fibers simultaneously are pulled out of a block of matrix material while the pullout
load and displacement is measured.

Pullout experiments have been used by numerous investigators and a review
paper summarizing some of the most commonly used experimental configurations
has been prepared by Gray (1983).

In general it is not possible from a conventional pullout experiment to evaluate
the validity of a given interfacial modelling scheme, i.e. it is not possible to deduct
from a simple pullout test weather a perfect bonding/debonding approach or a more
general type of modelling (13)-(15) should be used.

Bien and Stroven (Biefi (1986), Biefi and Stroeven (1988)) conducted some very
detailed studies of a series of pullout tests using a holographic interferometry method
combined with a special pullout setup. The experimental setup consisted of a
40x80x20 mmm block of concrete with an embedded steel strip modelling the pull-
out of a steel fiber from a cementitious matrix. This setup allowed the displacement
fields in the fiber as well as in the matrix to be determined.

Bien and Stroeven clearly identified one interfacial zone with displacement conti-
nuity and another interfacial zone with displacement discontinuity, thus supporting
a perfectly bonded/debonded approach to the interface modelling problem.

Applying a perfectly bonded/debonded approach to the interfacial modelling of
the fiber pullout problem and furthermore applying either a stress criterion or a
fracture mechanical criterion to predict continued debonding the following should
be noted:

o According to the fracture mechanical approach the stress criterion parameters
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qm,, and q! are subjected to the requirement (30). Experimental observa-
tions seems to verify this, see Bentur and Mindess (1990), p.62. Bentur and
Mindess applies a number of different stress criterion based models to differ-
ent experimental pullout tests reported in the literature ,nd find with one
exception (q,.,/p = 9 MPa and qf/p = 11.5 MPa) that equation (30) holds.

* As pointed out by Leung and Li (1990) it is not possible from a single or
a series of pullout tests with the same fiber radius to determine weather a
stress criterion or a fracture mechanical criterion is the most appropriate one
to use. To determine which of the two approaches to be used a series of tests
with different fiber radii should be conducted to test weather the size effect
predicted by the fracture mechanical approach can be observed.

9 To the authors knowledge no experiments on cementitious matrix/fiber sys-
tems have been reported which directly indicate that the perfectly bonded/
debonded type of interface modelling is inadequate. However, only very few
experiments allow for microscopic observation of the fiber/matrix interface
during loading.

* Finally it should be noted that the displacement measurements done on con-
ventional pullout tests include not only the displacements originating from
the strains in the fiber/ matrix system but also the displacements originating
from the strains in the free part of the fiber and sometimes part of the testing
machine. Simple calculations show that the latter part often can one order of
magnitude grater than the first part. This of cause makes a comparison with
models which yield only displacements in the fiber/matrix system difficult.

5 Conclusions

From a theoretical point of view characterization of the interface in a cementitious
fiber/matrix system consists of one or two steps: Characterization of the interface
and if the interface characterization involves a perfectly bonded interface as well a
a debonded interface determination of the criterion for continued debonding.

The fiber pullout problem has been investigated with a perfectly bonded/ de-
bonded interface characterization and applying a stress based as well as a fracture
mechanical based criterion for continued debonding.

From a theoretical point of view the stress based criterion does not predict true
material parameters since the magnitude of the parameters depend heavily on the
type of modelling used.

From an experimental point of view a fracture mechanical criterion for continued
debonding can only be verified using a test series designed especially to bring out
the size effects involved.
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6 Future research

On the basis of the investigations above the following suggestions for future research
are made:

" Further experimental investigations of the size effects invo!ed in bond char-
acterization (e.g. in connection with pullout tests) in order to verify of reject
the size effect predicted by the fracture medanical approach.

" Further development of advanced pullout test setups which are capable of de-
termining loads and displacennts near the matrix surface as well as debonded
lengths at different load levels.

* Further work on the implementation in pullout models of interface modelling
of the type (13)-(15), either on the whole interface or on part of the interface
serving as a transition zone between the debonded and the perfectly bonded
interface.
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ABSTRACT

Based on the post-peak cyclic tensile behaviour of concrete, a model for the

fatigue behaviour of this material is proposed. In order to verify the model,

crack opening and closure of a discrete crack under cyclic loading is studied

by computer simulation. Input for the model is an appropriate description for

alternating stresses in the post-peak tensile region. Results of deformation-

controlled uniaxial tensile tests have been used to develop a new model, which

consists of continuous functions. This constitutive model was implemented in

the FE-code DIANA. It is shown by numerical analysis of a beam under four-

point bending, how a crack or softening zone propagates under repeated

loading. The fatigue life of this beam for cyclic loading between load-levels

0 and 95 % of its maximum load bearing capacity, is predicted. The results of

this preliminary analysis are promising and show good agreement with results

that can usually be found in fatigue experiments.

INTRODUCTION

Fatigue of concrete has been studied for many years now. Especially, after the

oil crisis in the seventies, research activities in the Netherlands concerning

this topic increased considerably. All these investigations yielded an

enormous amount of data, like W8hler curves or S-N curves and Goodman

diagrams. Nevertheless, despite all these efforts, the cause and mechanism of

the fatigue behaviour of concrete is yet still not fully understood.
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Meanwhile, fracture mechanics had entered the research field of concrete

structures. Especially the nonlinear fracture mechanics, in which a softening

zone ahead of a visible crack tip is assumed, has shed new light on the

behaviour of concrete structures (see for instance [11). By using appropriate

material models, the behaviour of most structures can now very well be

predicted. It may be obvious that also new achievements in computational

techniques and the fact that much more powerful computers became available,

has contributed strongly to this progress.

A fatigue model based on nonlinear linear fracture mechanics will be

presented. With the model it will be shown that a discrete crack in concrete

will grow under cyclic loading. For the sake of clarity, in this paper, a

discrete crack is defined to be a visible crack with a softening zone ahead of

it, or just a softening zone alone. As soon as the concrete strain reaches the

strain that belongs to the tensile strength, which amounts about 100

microstrain, a softening zone is created. It may be obvious that such discrete

cracks exist in most concrete structures.

Tnput for the model is the post-peak cyclic behaviour of concrete under

tensile loading. Therefore, deformation-controlled uniaxial tensile tests were

performed in the Stevin Laboratory of the Delft University of Technology.

Based on the results for post-peak cyclic loading, a new constitutive model

was proposed [2]. This model was implemented in the DIANA finite element code

and a first fatigue analysis was performed. In this paper, the material mode.

will be presented and some model predictions will be compared with

experimental results. Furthermore, the results of the preliminary numerical

analysis will be presented and discussed.

APPROACH

From deformation-controlled uniaxial tensile tests on concrete, it is known

that a loading cycle in the post-peak region of the o-6 relation displays a

behaviour as sketched in Fig. 1. It appears that after an unloading-reloading

cycle, the curve will not return to the same point of the envelope curve where

it started from, but to a point which belongs to a lower stress. This

phenomenon is due to the damage which is caused in such an unloading-reloading

loop. It may be clear that some mismatch of the crack surfaces will occur at

554



C = F/A - F

A

6

Fig. 1 Post-peak cyclic tensile behaviour of concrete.

unloading, resulting in a propagation of existing microcracks. From the

experiments, it was furthermore concluded that the envelope curve is not

significantly affected by the cyclic loading [2].

In Fig. 2 the stress-state in front of a visible crack after n loading cycles

(r -O) is plotted (solid line). Suppose this is part of a total structure which

is loaded till a certain load F. If this structure is subjected to another

unloading-reloading cycle, then we know by the post-peak tensile behaviour

I I I I I
loadin: cycle

-ft

L+ 1

F .. softening zone

Fig .I Po t-p ak c clic ten i e a iou of c nc e e

Fig. 2 Assumed stress-distribution near a crack; before and after a loading

cycle.
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(Fig.l) that the different area in the softening zone cannot attain the same

stress as they had at the beginning of this load cycle. This means that for

the same maximum external load F, an internal stress-redistribution has to

take place. By the dashed line in Fig. 2, a possible stress-distribution after

the load cycle is plotted. The actual new stress-distribution depends on the

total structure in combination with its load application. Nevertheless, the

basic idea is that the softening zone propagates under cyclic or fatigue

loading. Furthermore, it can be assumed that deformations increase with the

number of load cycles and that this will continue till no longer equilibrium

can be found. For the load-deformation relation of the structure, it means

that in that cede the descendirg branch is reached. To illustrate this, Fig. 3

shows an assumed load-deformation relation for a certain structure under a

continuous increasing deformation. The maximum load bearing capacity is equal

to F max . If the same structure is loaded cyclically, probably loops as

sketched in Fig. 3 will be found. The loops shift a little to the right, each

time a loading cycle is performed. This will proceed till, in a certain cycle,

the reloading curve meets the descending branch which is the boundary for

combinations of load and deformation that fulfill the requirement of

equilibrium. Then failure of the structure occurs.

load F

Fmax.

Fl ow.

deformation 6

Fig. 3 Schematic representation for the load-deformation relation of a

structure loaded under continuous increasing deformation or cyclically

loaded between Fupp. and Flow.
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In Fig. 3, it can be seen that for a decreasing upper load level of the

cycles, the maximum available increase of deformation, which is equal to the

deformation at the descending branch minus the deformation at the ascending

branch for that load level, increases. This points to an increasing fatigue

life for a decreasing upper load level, which tendency corresponds to that one

known from S-N curves (see Fig. 4a). Nevertheless it may be clear that it can

only be a minor contribution to the increase of the fatigue life N for a

decreasing upper load level. This, namely, yields a S-N relation which is

approximately linear, while in reality a logaritmic relation will be found

(see Fig. 4a). Therefore, for a decreasing upper load-level of the cycles, the

increase in deformation per cycle has to decrease considerably.

Experiments show for the increase of strain (or deformation) at the upper

stress-level (or load-level) a relation as schematically plotted in Fig. 4b.

It is now interesting to see if such a relation can also be found with a

numerical analysis. Finally, the fact that experiments showed that there is a

strong relation between the cyclic strain rate in the secondary branch of the

e-n relation and the number of cycles till failure [3], supports the existence

of a failure criterion based on a maximum deformation as it is included in the

proposed model.

Omox/ft or Fupp/Fmax. Eor

secondary branch

log N n

Fig. 4 Typical results for fatigue tests on plain concrete; a) S-N curve or

Wdhler curve, b) cyclic creep curve (see also [3]).

The idea as presented above, is not completely new. A similar model was

proposed in 1983 by Gylltoft [4]. The material model for the post-peak
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behaviour he used, however, deviated strongly from that one that can be found

in experiments. In his material model, he did not assume a unique envelope

curve. As a result, the deformation at the descending branch did not act as

the failure criterion in his model. Nevertheless, the idea of tackling the

fatigue behaviour of concrete, starting from a fracture mechanics point of

view was the same. Then, at the Stevin Laboratory some preliminary

investigations in this direction were performed (see [51).

CONTINUOUS-FUNCTION-MODEL

For the approach of the fatigue behaviour, as presented above, it was

necessary to have an appropriate model for the tensile post-peak cyclic

behaviour of concrete. It can be mentioned, however, that such a model is not

only required for the fatigue modelling, but for all analyses in which

unloading (and reloading) occurs. In this respect it should be noted that a

structure may partially unload due to stress-redistributions, while the

overall loading increases continuously.

For the post-peak cyclic tensile behaviour of concrete, a limited number of

models has been presented in recent years (for a review see (2]). Out of these

models, that one by Yankelevsky and Reinhardt [6) simulates appropriately the

real material behaviour. It exists of multilinear loops which are constructed

by means of so-called "focal-points". A draw back of this model for the

fatigue approach is that the increase in crack opening after a loading cycle

is independent of the lower stress-level of this loop. As a result, the

influence of the lower-stress level of loading cycles on the fatigue life

cannot be studied with this material model. Furthermore, for convenience of

implementation in numerical programmes, it was preferred to use continuous

functions instead of multilinear descriptions. For these reasons, a new model,

that can easily be implemented as a mathematical subroutine in numerical

programmes, was proposed. The model gives a description for the stress-crack

opening relation, while crack opening is defined according to the Fictitious-

Crack-Model by Hillerborg et al. [7]. It consists basically of three

continuous functions (see Fig. 5) and is therefore called "Continuous-

Function-Model" (CFM). Here, the basic equations will be presented. For a

complete description of the model, including descriptions for inner loops

(reversals within a loop), the reader is referred to [2].
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Fig. 5 Set-up for the crack cyclic behaviour model [2].

The three basic equations are, respectively, empirical expressions for the

unloading curve (I), the gap in the envelope curve (II) and the reloading

curve (III). It has been chosen to use only characteristic points in the O-w

relation (ft,Ww 'aeu aL) as variables in the expressions, while wc is

defined as 5.14GF /f The expressions that were chosen are based on a close

inspection of the experimental results. The softening relation is described by

the following expression:

a w 3 w W 3
f (1+(cl w) )exp(-C 2W ) W- (l+c,)exp(-c2 ) (1)

with c-3, c2-6.93 and wc-5.14GF/ft *

Starting from point (weu, oeu) at the envelope curve, the unloading curve is

determined by:

a -eu +I inW))
ft f +  (w w )[0.014(lnw)) -0.57j(l- w (2)
t t eu /Wc )+04eu " eu
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Wl-en reloading starts from a lower stress level aL, the gap in the envelope

curve is known by an expression for Winc:
W.C

in eu . eu L.inc _ 0. l In(1+3 a 
(3)

c c t

The coordinates of the returning point at the envelope curve (w era er) can now

be found with

wer - w +Winc (4)

and eq. 1. The reloading curve, starting from the point at the lower stress

level (aL,wL) up to point (wer aer) at the envelope curve, is determined by:

(w-w L 0.2c 3  (w-wL ) c4  C 3  a

e (+(I-(I- w)-- - '-1
C3 (Wer- wL) (WerWL +) aL -I(a)

with for the coefficients c3 and c 4 :
w 0.71f tww

33tL(-1 -0.5-) e w eu(f )(b
c3-3(3"-t_ ) c l(weU Lc (5b)

C\ f c w

ftL -Ir

c4-[2(3-t L)3 + 0.5] (5c)

COMPARISONS BETWEEN THE MATERIAL MODEL AND EXPERIMENTAL RESULTS

Predictions by the Continuous-Function-Model have been compared with

experimental results of deformation-controlled uniaxial tensile tests.

Therefore a test series was performed in which post-peak loops between the

envelope curve and five different lower stress-levels (aL is approximately 1,

0, -1, -3 and -15 MPa) were performed. For a complete description of these

comparisons, the reader is referred to [2]. It could be concluded that the

model represents the material behaviour very well. To illustrate this, Fig. 6

shows the results for one experiment. In this figure also the predictions by

the Focal-Point-Model are plotted.
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Fig. 6 Experimental stress-crack opening relation and the predictions by the

Continuous-Function-Model (CFM) and the Focal-Point-Model (FPM) [23.

As stated above, the relation between the gap in the envelope curve and the

lower stress-level should be modelled properly for studying the influence of

the lower load-level of the loading cycles on the fatigue life of a structure.

The gap in the envelope curve can be represented either by the increase in

crack opening win c or the stress drop Au (see Fig. 5). Fig. 7 shows the

comparison between the model predictions and experimental results for the

relative stress-drop as function of the relative crack opening. As can be

seen, the experiments show the stress drop to increase for a decreasing lower

stress level, which is also included in the Continuous-Function-Model. The

fact that &a is independent of aL in the Focal-Point-Model can also clearly be

seen in this figure.

NUMERICAL ANALYSIS OF A BEAM UNDER FATIGUE WADING

In order to verify the proposed material model, a number of four-point-bending

tests on plain notched beams were performed and simulated with the finite

element code DIANA. Results of these analyses will be presented in [8]. One of
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Fig. 7 Experimental results and model predictions for the stress drop Ac at

the envelope curve [2].

these beams was used to perform a fatigue analysis. Specimen dimensions and

loading arrangement are schematically plotted in Fig. 8a. The notch depth was

50 mm which is half of the beam height. Symmetry was used for the applied FE-

idealization (see Fig. 8b). For the concrete, eight-noded and six-noded

quadratic elements have been used, while six-noded interface-elements were

applied to model the crack. For the interface-elements, che vertical

displacements of each two nodes that were positioned besides each other were
assigned to be equal. In horizontal direction, the Continuous-Function-Model

becomes active as soon as the tensile strength is reached. For reasons of

comparison with experiments, the vertical displacement of point A (see Fig. 8)
was used for the deflection of the beam.

The elastic concrete properties were taken as: oung's modulus E-38000 MPa and

Poisson's ratio -0.2. The softening parameters, tensile strength and fracture

2energy were: ft" 3.0 MPa and G tF-125 J/M
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Fig. 8 Specimen dimensions of the four-point bending specimen used for the

analysis (a) and applied FE-idealization (b) [8].

Load-deflection relations

Tirst an analysis for a continuous increasing deformation was performed. In

this analysis the vertical deformation at the loading point was used as

control-parameter. The load-deflection relation that was obtained is plotted

in Fig. 9 by the dashed line. Here, only the result up to a deflection of 0.15

mm is plotted. For the force at peak load F max a value of 1292 N was found.

For the fatigue analysis, the same input was used as for the quasi-static

analysis, while in this case the load was applied by load increments (load-

controlled). First, load steps up to a maximum of 95% of the peak load were

performed. Subsequently, the beam was unloaded till zero load again, followed

by a reloading till the same upper value of 0.95 F max . For the unloading as

well as for the reloading path, nine load steps of equal size were performed.

This procedure was repeated till it was no longer possible to find a new

equilibrium. The result of this analysis as far as the load-deflection

relation
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Fig. 9 Load-deflection relations predicted by the FE analyses [8].

is concerned can be seen in Fig. 9. It appeared that 35 unloading-reloading

loops could be performed, while in the subsequent reloading part it was not

possible to find a solution at the upper load-level. It can be assumed that

for smaller loading steps the descending branch as found in the quasi-static

analysis would have been reached at a load level smaller than Fupp.

Therefore, it can be concluded that the descending branch of a quasi-static

analysis was an envelope curve and failure criterion for the fatigue loading.

Stress-distributions

For a number of loops, the stress-distributions at the upper (F-F ) andupp.

lower (F-0) loading points are plotted in Fig. 10. First of all, it can be

seen that the length of the softening zone increases with the number of load

cycles. Furthermore, the stress-distributions at zero load show that important

residual stresses are active after a nreloading till 95% of the maximum load.

It appears that the tensile residual stresses in the centre part of the cross-

section increase with the number of cycles performed.
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Fig. 10 Stress-distributions at the upper and lower load level for a number of

loading cycles [8]

Cyclic creep curve

As already mentioned before, fatigue tests usually show a particular shape for

the increase of strain or deformation at the maximum load level as function of

the number of cycles performed (Fig. 4b). Normally strain is plotted as

function of number of cycles, but it may be obvious that the same holds true

for deformation, or, as for this analysis, deflection. Characteristic for a

cyclic creep curve is that first the increase of deformation per cycle

decreases with increasing n. This first branch of the curve is followed by a

secondary branch where this increase is constant. Just before failure occurs,

the increase of deformation per cycle increases rapidly.

The deflection as function of number of loading cycles for the performed

analysis is plotted in Fig. 11. As can be seen, the shape of the curve

resembles very well the cyclic creep curve as found in experiments.

DISCUSSION

In the model for the fatigue behaviour of concrete as presented, starting

point is the existence of a softening zone in the structure. This means that

if the material of a structure behaves elastically till F and thatupp.

nosoftening zone existed in advance, the fatigue model will not become active.

First of all the authors believe that for most structures, softening zones,
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Fig. 11 Deflection as function of number of cycles [8].

for instance, due to differential drying shrinkage, exist in concrete

structures. Furthermore, the authors believe that a similar model can also be

used ts study the fatigue behaviour of a structure without a softening zone as

defined above. For that purpose, however, the structure should be modelled at

a lower level. In fact, the model was presented at a macro-level. Concrete is

treated as a homogeneous isotropic continuum, in which a crack will arise

after the strain belonging to the tensile stress is passed. At a lower level,

the concrete can be modelled as a two-phase material, in which larger

aggregates are embedded in a mortar matrix. In this matrix, softening zones

will exist, for instance near aggregates, due to a difference in stiffness

between the matrix material and the aggregate (see Fig. 12). It may be obvious

that an analysis with a structure modelled in this way demands for extremely

powerful computers. Here, however, it is only intended to show that the model

can be used at different levels of modelling.

Now the model can further be used to study the relation between F and N (S-max

N curve) or the effect of the lower load level on N. The analysis which is

presented, however, is very computer-time consuming. Therefore, for such a

study a more simplified modelling of the concrete outside the crack area is

required. Nevertheless, even then simulating all loadings cycles (thousands or

milljU s) will not be possible. If, however, in one way or another, the

secondary branch can be reached directly, then an estimation for the number of

cycles till failure can be obtained by simulating only a limited number of

cycles. Yet, it looks not to be possible to do this with the presented model.

Further study-is this direction is required.

566



Fig. 12 Assumed stress-distribution between the aggregates in a two-phase

model of concrete.

CONCLUSIONS

1 The proposed approach for the fatigue behaviour of plain concrete looks

promissing.

2 The constitutive model for the stress-crack opening relation of concrete

represents the actual material behaviour, including the relation between

stress drop and the lower stress-level of the loading cycle, very well.

3 By numerical simulation, it has been demonstrated that the softening zone

will propagate under repeated loading.

4 Failure criterion in the presented modelling is the deformation

corresponding to the deformation at the descending branch obtained by a

quasi-static analysis.

5 For tie increase of deflection as function of number of cycles, a curve was

obtained by the numerical analysis which resembles the cyclic creep curves,

as usually found in fatigue experiments, very well.
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FRACTURE OF CONCRETE AT HIGH STRAIN-RATE

C. Allen Ross

Air Force Engineering and Services Center

Tyndall AFB, Florida 32403-6001

INTRODUCTION

Fracture of concrete at high strain rates, as well as other
nonmetallic materials, show a rather similar dependence of
tensile fracture strength of upon the strain-rate t to the one-
third power. Here the high strain term is used to mean a strain-
rate above 1.0/sec. This rather interesting similarity amongst
several brittle materials is shown in Figure 1. These several
sets of data were experimentally determined by different
researchers and collected for comparison by Grady and Lipkin [1].
An analytical approach to determining fracture strength of
brittle materials either from a inherent flaw size [1] or an
energy method [1-4] leads to the same result. i.e. fracture
strength of brittle materials at high strain rates is a function
of strain rate to the one-third power. The relationship, based
on an inherent flaw size of a penny shaped crack, presented by
Grady [1-31 and discussed in detail by Reinhardt [5] is given as

S .77 (I)/3j/3(i)
Cs

where E is Young's Modulus, KIc is the fracture toughness, C,
is the elastic shear wave velocity, a., is the fracture stress and
E is the strain-rate. It is worth noting here that Equation (1)
is limited to dynamic loadings or high strain-rates. Apparently
the relationship given by Equation (1) holds regardless of the
quasistatic cylinder compressive strength f' c. However, at
strain-rates below approximately 1.0/sec and at quasistatic
strain-rates, fracture strength is also dependent upon f'c..
Semiempirical curves of various concrete mixes and strengths are
presented by Reinhardt [6]. However, the slope of the fracture
strength versus strain-rate for the dynamic and static regimes
are not sufficient information to determine where strain-rate
effects become very large.

Using data presented by Reinhardt [6] a simplified fracture
strength versus strain-rate curve may be drawn as shown in Figure
2. For this curve a critical strain-rate icr may be defined,
above which strain rate effects are very important because of the
rather large increases in fracture strength with relatively small
changes in strain-rate. The critical strain-rate is different
for different types of loadings. The normalized strength
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compression of tensile and compressive loading of concrete by
Ross [7] shows this rather distinct difference in Figure 3. The
critical strain rate for tensile fracture of a concrete (f', =
48.3 MPa, 7000 psi for 6-inch diameter cylinder) was found to be
approximately Lwo orders of magnitude less than that for
compressive fracture of the same material. Differences will also
exist between flexure and shear, however very little data are
available for these comparison but John and Shah [23] show some
estimates for various loadings.

Following the same assumptions and development for Equation
(1) an expression for concrete fragment size cf as a function of
strain-rate is given by Reinhardt [6] as

af=O.1477r/3[ CzK] 2/3j 2/3  (2)
E

Again, the expression of Equation (2) is for high strain-rates.
For compressive fracture of a split-Hopkinson pressure bar (SHPB)
concrete specimens, the fragment distribution of a sieve analysis
by Ross and Kuennen [8] showed considerable differelice between a
low strain-rate test of 25/sec and high strain rate tests of
100/sec and 200/sec. The size distribution for the SHPB tests is
shown in Figure 4. Equation (2), based on an inherent flaw size
distribution gives a good estimate of the average experimentally
determined high-strain-rate fragment size of Figure 4, but
underpredicts the fragment size of the 25/sec test. Fragment
size based on an energy criterion equation, similar to Equation 1
predicted much higher post-test average fragments for the SHPB
tests of Reference [8].

EXPERIMENTS

Initial studies and experiments of dynamic concrete fracture
and increases in compression strength weze conducted using impact
hammers or dropped weights against short concrete specimens and
long bars [9-15]. These early studies (1950-1980) may be
classified as dynamic tests as opposed to quasistatic tests, but
were mainly conducted in the low to intermediate strain-rates
range of 10-3/sec up to 10-'/sec. The disadvantage of dropped
weights is they require large drop heights to achieve impact
velocities necessary for high strain-rates. Probably the first
use of the higher strain-rates generated by a SHPB to test
concrete is reported by Sierakowski at al [16], as early as 1977.
Gas gun driven or torsional spring loaded SHPB test devices offer
an advantage of high velocity impact and high strain rates for
compression strength test and fracture of concrete. Several
large diameter SHPB devices have been built for compression
testing of concrete. A 76-mm (3.0 inch) diameter ShPb is located
at the University of Florida and is described in detail by
Malvern and Ross [17]. A 64-mm (2.5 inch) diameter SHPB,
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described by Felice [18], is located at Los Alamos National
Laboratory. A dual mode compression-tension 51-mm (2.0 inch)
diameter SHPB is located at the Air Force Engineering and
Services Center, Tyndall AFB, FL. and details of this device are
given by Ross [7].

Experiments on compression of cement paste at strain-rates up
to 0.3/sec were conducted by Harsh et al [45]. The effect of
strain-rate on cement paste and mortar show a nonlinear increase
up to the maximum strain-rate of 0.3.sec. Harsh also reports
increases in Poisson's ratio with strain-rate and decreases in
strain capacity with increases in water-cement ratio. The
presence of pore fluid and it's movement in saturated cement is
shown by Harsh to contribute to strain-rate sensitivity. The
higher the porosity the higher the strain-rate sensitivity.

Fracture of concrete in tension at strain-rates above
1.0/sec, by gas gun impact of steel projectiles on concrete rods
was reported by Mellinger and Birkimer [19] in 1966. These data
showed very large increases in concrete tensile strength; much
larger than the 100% and 150% increases in compressive strength
that had been reported earlier. Similar experiments were
conducted by Griner [20] but the large increases in concrete
tensile strength were not evident in the Griner data. A falling
weight driven tensile SHPB was developed at Delft University,
Netherlands and is described in some detail by Komeling et al
[21]. Tensile fracture of uniform cross section concrete bars
was accomplished in References [19-20] whereas short notched
specimens were fractured in References [7,21] by cementing the
specimens to the SHPB. The tensile pulse in the concrete bar
specimens [19-20] was generated by reflection of a compressive
pulse from the concrete bar free end, as opposed to the direct
tension SHPB loading devices of [7 and 21]. High strain-rate
tensile fracture of splitting-tensile specimens is also reported
by Ross [7] and this data along with other dynamic tensile
strength data are shown in Figure 3. A rather novel technique
developed by Gran [22] uses axial release waves from an initial
compression of a cylindrical concrete rod. The superposition of
the two relief waves at the rod midlength place the rod in
tension and the rod fails in tension. Tensile strengths found by
Gran are not nearly as high as those reported by Millinger and
Birkimir [19] and Ross[7].

Experiments specifically designed to study effect of high
strain-rate on fracture mechanics parameters are reported by John
and Shah [23]. For their experiments crack mouth opening
displacement (CMOD) and modulus of rupture (MOR) were measured in
a three point bending test specimen mounted in a modified
instrumented Charpy impact test device. The highest strain-rate
obtained in these tests was 0.4/sec. Using linear elastic
fracture mechanics (LEFM) the simplified fracture toughness KIcs
and the crack tip opening displacement CTOD can be determined
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from the experimentally determined CMOD and MOR of Reference
[23]. In similar experiments John and Shah [24] measured crack
velocity of concrete at high strain-rates using foil Krak gages,
developed by the TTI Division, Hartrun Corp., St. Augustine, FL.
These same gages were used by Ross et al [25] to measure crack
velocity of splitting tensile concrete specimens in a SHPB.

Bentur et al [26] examined the effect of concrete strength on
fracture energy and energy absorption capacity of impact tested
flexural beams made of reinforced concrete. Discussion on the
operation of this device and analysis of experiment al data is
given by Banthia et al [27]. Other dynamic modulus of rupture
and flexure tests are reported by Gopalaratnam et al [28-29], as
well as the modified Charpy impact data of Sauris and Shah [301,
and additional flexural impact experiments by Mindess and Nadeau
[31].

It appears that there are no laboratory experiments designed
specifically for gathering dynamic shear strength. This was
pointed out by Sierakowski [32] in a paper written for this NATO
Advanced Research Workshop of 1984 and there still appears to be
no specific research in this area. Field tests of scaled
reinforced concrete slabs failing by direct shear at the edges
are reported by Slawson and Kiger [33]. For these field tests
direct shear occurs for very short rise time blast loads and
occur at strain-rates of 10/sec. For rise times which are
longer, the response and subsequent failure of the slabs is that
of flexure.

Laboratory SHPB compression tests of concrete with confining
pressure is reported by Malvern and Jenkins .34]. These tests
were performed on concrete cylinders of unconfined static f' =

48.3 MPa using confining pressures of approximately 3.3 to 10.3
MPa (485-15000 psi). Dynamic tensile tests on concrete with
confining pressures are reported by Gran et al [22,35].

DISCUSSION

Fracture of concrete at high strain-rates is significantly
different than that found at the lower rates. Figure 5 shows a
schematic of the initial compressive fracture of concrete taken
from a high speed (10,000 f/sec) film for research reported in
Reference [7]. For Figure 5a the strain-rate is approximately
25/sec and the strain-rate of Figure 5b is approximately 130/sec.
For both strain-rates the fracture appears as wavy cracks running
almost parallel to the longitudinal axis of the specimen. For
the lower rate of Figure 5a the number of cracks are less than
that of the higher rate of Figure 5b. In addition there appears
to be more transverse cracks in Figure 5b which gives smaller
fragments which is in agreement with the fragment distribution of
similar tests shown in Figure 4. These rather longitudinal
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surface cracks appear to be similar to the internal crack
patterns, Figure 6, found by Malvern and Jenkins [34] when
testing concrete in a SHPB with a limiting strain collar which
slightly shorter than the specimen. The crack patterns of
Reference [34] were obtained by a special crack enhancement
process after sectioning of the cylindrical specimen. These
internal cracks of Reference (34] and the surface cracks of
Figure 5 are probably the result of tensile straining caused by
Poisson effect and tensile stress cracking due to boundary
conditions at the interface of the specimen and SHPB.
Experimental evidence by Malvern and Ross [17], using
circumferential strain gages on a dynamically compressed concrete
cylinder in a SHPB, shows that a compressive stress greater than
the static compressive strength is evident prior to failure in
the circumferential direction. Also, for Reference [17] the
ratio of the circumferential strain to the longitudinal strain
compared to Poisson's ratio for the concrete material. It is
interesting to note here that the onset of high strain-rate
effect £cr for tensile fracture is much less than that of
compressive fracture, see Figure 3.

The effect of a static confining pressure on the compressive
fracture strength is to increase the compressive strength for a
given strain-rate. The combined effect of strain-rate and static
confining pressure of 19 confined and 8 unconfined SHPB tests is
given in Reference [34] as

of = A + B if + Cpf
A = 64.4 MPa
B = 0.388 MPa's
C = 7.59 (3)

where aY is the compressive failure stress, if is the strain-rate
at failure and pf is the confining pressure at failure. The
expression, Equation 3, was obtained for an unconfined concrete
strength of 48 MPa (7,000 psi) at strain-rates of approximately
50/sec to 150/sec and confining pressures of 3.3 MPa (485 psi) to
10.3 MPa (1500 psi). Extrapolation outside these ranges is not
recommended. For unconfined tests of References (7,8,17,34) the
stress-strain curve rises to a peak and decays very quickly to
zero with no elastic recovery and the specimen is reduced to
rubble. For the confined tests, the stress-strain curve rises to
a plateau and remains relatively constant (resembling a ductile
curve) throughout the loading pulse then falls to zero with an
apparent elastic unloading. The effect of confinement in the
SHPB tests on specimen fracture is to produce an almost intact
specimen with one major crack running diagonally across the
specimen from one end to the other as opposed to the highly
fracture rubble of the unconfined SHPB tests.

Tensile fracture of direct tension SHPB specimen by Ross [7]
showed one or more rather clean fractures across the test
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specimen. Multiple fractures occur as strain-rate is increased.
The experimental data indicates that fracture occurs during the
first passage of the tensile stress wave across the specimen.
The tensile fracture surface of the 48 MPa compressive strength
concrete showed both aggregate pull out and fracture in an
approximate one to one proportion. Splitting-tensile SHPB
tests[7], of the 48 MPa concrete gave slightly higher tensile
strength than that of the direct tension tests. However both the
splitting-tensile tests and direct tensions tests show similar
strain-rate effects. Large increases in tensile strength show up
at lower strain-rates than the compressive data (see Figure 3).

Both photographic and Krak gage data were obtained for crack
propagation in the splitting-tensile tests of Reference [7).
Figure 7 shows the crack pattern and the stress associated with
these patterns for a SHPB splitting-tensile test. The Figure 7
crack pattern was copied from a Polaroid film taken using an
image converter camera running at an equivalent rate of 2000,000
f/sec. The initial crack of Figure 7 appears to start just to
the left of the center of the specimen on the side of the
incident pulse at a time equivalent to the twice the transit time
of the specimen. The pulse then travels in both directions and
the specimen fails into two major pieces. Crack velocity
measurements for these splitting tension specimens at strain-
rates of 1/sec to 10/sec were found to be of 10 to 50% of the
3620 m/sec acoustic velocity of the specimen.

Dynamic analysis, using an ADINA finite element code, of the
splitting-tensile cylinder by Tedesco et al [36] shows a build-up
of stress distribution very similar to the static stress
distribution. A computer generated crack pattern using the
specimen loadings of Reference [7) is shown in Figure 8. The
bifurcation of the crack shown in Figure 8 was also observed in
the experiment. Bifurcation of the crack occurs at the higher
strain-rates and appears to be a result of the biaxial
compression-tension that occurs off the centerline of the
specimen. The failure surface model used in Reference [36]
degrades the tensile strength linearly with the presence a
compressive principal stress. It is interesting how well the
fracture pattern generated using a structural analysis code
resembles the fracture pattern observed in the experiments. The
differences in times of events of Figures 7 and 8 is due to the
difference in crack velocities in the analysis and experiment.
In the analysis of Reference 36 the acoustic velocity of a linear
elastic material is used in the calculations and in the
experiment the crack velocity may be only 10% of the acoustic
velocity.

Linear elastic fracture mechanics (LEMF) parameters have been
used to predict the cffects of strain-rate on the tensile
strength and modulus of rupture. John and Shah [23) measured
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crack mouth opening displacements (COMD) and used LEMF
relationships to predict crack tip opening displacement, (DTOD)
and fracture toughness for Mode I fracture, Kc. These values
and Young's modulus E may then be used to predict uniaxial
tensile strength and splitting-tensile strength. For the higher
strain-rate regimes the DTOD is assumed to be the only strain-
rate dependent parameter in their calculation. The ratio of
dynamic CTOD and quasistatic CTOD of [23] is based on an
exponential function using the ratio of dynamic to quasistatic
strain-rates. The elastic modulus E and the fracture toughness
KIc are assumed to be strain-rate independent but vary with
concrete compressive strength f',. Strain-rate independence of
compressive Young's modulus has been observed in Reference [28]
and in experiments of Reference [7]. The compressive module
obtained in SHPB work such as [7] is not usually reported as the
initial linear portion of the stress-strain occurs during the
rise time of the loading pulse, before uniform stress along the
specimen length is obtained. Use of the quasistatic fracture
toughness in [23] was justified on the basis of the very low
crack velocity observed at the higher strain-rates.

The two parameter fracture model of [28] appears to predict
the low strain-rate tensile strength data of Cowell [37], Takeda
et al [38], Kormeling et al [21] and data presented by Oh [39].
However, it underpredicts experimental data at strain-rates above
1/sec [4,7]. This underprediction of the tensile fracture
strength of concrete at high strain-rates, for a predictor based
on slightly lower strain-rate data, may be attributed to the
steep rise in strain-rate sensitivity on tensile strength shown
by Reinhardt [6].

The two parameter fracture model of John and Shah [23] was
also used to predict modulus of rupture (MOR) by using CMOD data
taken from fracture of three point bend specimens in a modified
Charpy device. Again the model agrees well with MOR data taken
at strain-rates below 1/sec, but would not be expected to predict
MOR for the higher strain-rates.

Probably the highest dynamic tensile strength data reported
is by McVay [40]. Dynamic tensile strength increases of over
700% at strain-rates of 100/sec were calculated from spall of a
concrete slab subjected to blast from a conventional weapon.
These stresses were obtained by back calculating the failure
stress from the measured spall plane and the stress wave shape
measured at the back of the slab. These data are shown in Figure
3 and fall in the high strain regime predicted by Equation (1).

The observations and data for both low and high strain-rates
point out the importance of knowing the fracture strength and
fracture processes for the entire strain-rate region of the
loading environment. This is especially true for the tensile
dominated fractures of uniaxial tension, transverse tensile
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fracture of direct compression, splitting-tensile fracture and
the tensile fracture of flexure. Models predicting tensile
fracture must include the nonlinear portion of the low strain-
rate regime and the rather linear and steep slope of the higher
strain-rates.

A model presented by Weerheijm and Reinhardt [41], based on
an array of penny shaped cracks agrees very well with the
concrete tensile date shown in Figure 3. This model, shown as
solid lines of Figure 3 predict both the lower strain-rate
concrete strength as well as changing slope to predict the
concrete strength at the higher strain-rates. This model takes
into account the strain-rate dependence of crack speed and
fracture energy as well as the effect of compressive concrete
strength on tensile strength.

The micromechanical modelling of concrete is based mainly on
some distribution of microcracks, microdefects or weak planes.
Chen [42] uses a Weibull statistical crack per unit volume
distribution which is activated by bulk or volumetric strain
based on the mean stress and bulk modulus. The crack
distribution is defined in terms of constants taken from
experimentally determined fracture stress versus strain-rate data
or estimated from Equation (1). In addition the average crack
dimension used by Chen [42] is based on a fragment dimension
similar to Equation 2. The interaction of the cracks in Chen's
model is treated as an internal state variable which represents
the accumulation of damage in the material. This damage is
assumed to degrade the material stiffness based on equations by
Budinasky and O'Connell [43] for an array of penny shape cracks
in an isotropic medium. The point here is that modelling of
fracture of concrete at strain-rate, whether it be a complicated
code such as [42], a single formula for dynamic tensile strength
as given by Oh [39] or empirical equations such as Soroushian et
al [48], are all based on some form of experimental data.

SUMMARY

Based on experimental observations, fracture strengths of
concrete for most all types of loading are dominated by tensile
fractures. At the quasistatic and low strain-rates the fracture
strength versus strain-rates is nonlinear up to some critical
strain-rate. Beyond this critical strain-rate the strength
increases rather drastically as a function of the strain-rate to
the one-third power. It appears that the critical strain-rate
occurs at different strain-rates for the different loadings. It
is not that any type of loading is more strain-rate sensitive
than another, but that the high strain-rate sensitivity occurs at
different strain-rates for different types of loading.

All the modelling of concrete fracture at high strain-rates

578



at some point in the analysis requires time dependent fracture
data. Many times this data is not available and care must be
exercised in extrapolating beyond the strain-rate range in which
the experimental data was taken.

For the tensile dominated concrete fractures, Mode I fracture
appears to occur in the majority of failures. In the low strain-
rate compression loading the inherent flaws at the higher stress
concentrations grow and relieve the stresses at other sites.
Under the low loading rates these activated cracks have time to
grow into the weakest areas of the concrete matrix and aggregate.
The result is a post-test specimen with very few cracks and large
broken pieces. As the compression load rate increases many more
of the inherent flaws are activated and forced to grow into the
high strength areas of the mortar and aggregates. This results
in increased strength, a larger number of much shorter cracks and
smaller fragments. At much higher rates the fragments are much
smaller and the concrete is reduced to rubble. In the case of
tension/compression biaxial or triaxial stress states the tensile
failure stress is reduced by the presence of the compressive
stress. Hydrostatic confining pressure on concrete inhibit crack
growth and fracture at high strain-rates. Continued research
into high strain-rate compression of concrete is needed to
characterize the crack area and crack pattern for both unconfined
and confined loadings.

High strain-rate uniaxial tension specimens usually fail by a
single crack plane across the specimen. At high strain-rates
multiple cracks form. Experimental direct tension fracture
strength at strain-rates higher than 1.0/sec are needed to
completely define this area of strain-rate. Data on the effects
of conf'ning pressure on tensile strength at higher strain-rates
are needed to better understand fracture processes of the
compression loading.

Strain-rate effects data on fracture mechanics parameters are
scarce and further experimentation is needed. Fracture toughness
is a vary fundamental part of the prediction of fracture strength
of concrete. Some fundamental high strain-rate experiments in
Mode I and Mixed Mode fracture, with and without confining
pressures, are needed to determine the extent of strain-rate
effects on fracture toughness.
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Figure 5 Tracing of surface cracks of SHPB concrete compressive
specimen taken from high speed film. Time is approx-
imately 200 microsec after arrival of incident pulse.
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45 mm long

bar side dia.

Figure 6. Internal crack pattern of SHPB concrete compressive test with
strain limiting collar. Strain-rate 150/sec. Maximum strain of
0.0128 at approximately 150 microsec after arrival of the
incident pulse. (Fig. 24 Ref. [46])
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